No Arabic abstract
We investigate a sample of 3412 {it International Celestial Reference Frame} (ICRF3) extragalactic radio-loud sources with accurate positions determined by VLBI in the S/X band, mostly active galactic nuclei (AGN) and quasars, which are cross-matched with optical sources in the second Gaia data release (Gaia DR2). The main goal of this study is to determine a core sample of astrometric objects that define the mutual orientation of the two fundamental reference frames, the Gaia (optical) and the ICRF3 (radio) frames. The distribution of normalized offsets between the VLBI sources and their optical counterparts is non-Rayleigh, with a deficit around the modal value and a tail extending beyond the 3-sigma confidence level. A few filters are applied to the sample in order to discard double cross-matches, confusion sources, and Gaia astrometric solutions of doubtful quality. {it Panoramic Survey Telescope and Rapid Response System} (Pan-STARRS) and {it Dark Energy Survey} (DES) stacked multi-color images are used to further deselect objects that are less suitable for precision astrometry, such as extended galaxies, double and multiple sources, and obvious misidentifications. After this cleaning, 2642 quasars remain, of which 20% still have normalized offset magnitudes exceeding 3, or 99% confidence level. We publish a list of 2118 radio-loud quasars of prime astrometric quality. The observed dependence of binned median offset on redshift shows the expected decline at small redshifts, but also an unexpected rise at $zsim 1.6$, which may be attributed to the emergence of the C IV emission line in the Gaias $G$ band. The Gaia DR2 parallax zero-point is found to be color-dependent, suggesting an uncorrected instrumental calibration effect.
The second release of Gaia data (Gaia DR2) contains the astrometric parameters for more than half a million quasars. This set defines a kinematically non-rotating reference frame in the optical domain referred to as the Gaia-CRF2. The Gaia-CRF2 is the first realisation of a non-rotating global optical reference frame that meets the ICRS prescriptions, meaning that it is built only on extragalactic sources. It consists of the positions of a sample of 556 869 sources in Gaia DR2, obtained from a positional cross-match with the ICRF3-prototype and AllWISE AGN catalogues. The sample constitutes a clean, dense, and homogeneous set of extragalactic point sources in the magnitude range G from 16 to 21 mag with accurately known optical positions. The median positional uncertainty is 0.12 mas for G < 18 mag and 0.5 mas at G = 20 mag. Large-scale systematics are estimated to be in the range 20 to 30 muas. The accuracy claims are supported by the parallaxes and proper motions of the quasars in Gaia DR2. The optical positions for a subset of 2820 sources in common with the ICRF3-prototype show very good overall agreement with the radio positions, but several tens of sources have significantly discrepant positions.
As part of the data processing for Gaia Data Release~1 (Gaia DR1) a special astrometric solution was computed, the so-called auxiliary quasar solution. This gives positions for selected extragalactic objects, including radio sources in the second realisation of the International Celestial Reference Frame (ICRF2) that have optical counterparts bright enough to be observed with Gaia. A subset of these positions was used to align the positional reference frame of Gaia DR1 with the ICRF2. We describe the properties of the Gaia auxiliary quasar solution for a subset of sources matched to ICRF2, and compare their optical and radio positions at the sub-mas level. Their formal standard errors are better than 0.76~milliarcsec (mas) for 50% of the sources and better than 3.35~mas for 90%. Optical magnitudes are obtained in Gaias unfiltered photometric G band. The comparison with the radio positions of the defining sources shows no systematic differences larger than a few tenths of a mas. The fraction of questionable solutions, not readily accounted for by the statistics, is less than 6%. Normalised differences have extended tails requiring case-by-case investigations for around 100 sources, but we have not seen any difference indisputably linked to an optical-radio offset in the sources.
Positions and proper motions of Gaia sources are expressed in a reference frame that ideally should be non-rotating relative to distant extragalactic objects, coincident with the International Celestial Reference System (ICRS), and consistent across all magnitudes. For sources fainter than 16th magnitude this is achieved thanks to Gaias direct observations of quasars. At brighter magnitudes it is difficult to validate the quality of the reference frame due to the scarcity of comparison data. This paper examines the use of VLBI observations of radio stars to determine the spin and orientation of the bright reference frame of Gaia. Simultaneous estimation of the six spin and orientation parameters makes optimal use of VLBI data and makes it possible to include even single-epoch VLBI observations in the solution. The method is applied to Gaia Data Release 2 (DR2) using published VLBI data for 41 radio stars. Results for the 26 best-fitting sources indicate that the bright reference frame of Gaia DR2 is rotating relative to the faint quasars at a rate of about 0.1 mas/yr, significant at 2-sigma level. This supports a similar conclusion based on a comparison with stellar positions in the Hipparcos frame. The accuracy is currently limited by the small number of radio sources used, by uncertainties in the Gaia DR2 proper motions, and by the astrophysical nature of the radio stars. While the origin of the indicated rotation is understood and can be avoided in future data releases, it remains important to validate the bright reference frame of Gaia by independent observations. This can be achieved using VLBI astrometry, which may require re-observing the old sample of radio stars as well as measuring new objects. The unique historical value of positional measurements is stressed and VLBI observers are urged to ensure that relevant positional information is preserved for the future.
The Gaia optical reference frame is intrinsically undefined with respect to global orientation and spin, so it needs to be anchored in the radio-based International Celestial Reference Frame (ICRF) to provide a referenced and quasi-inertial celestial coordinate system. The link between the two fundamental frames is realized through two samples of distant extragalactic sources, mostly AGNs and quasars, but only the smaller sample of radio-loud ICRF sources with optical counterparts is available to determine the mutual orientation. The robustness of this link can be mathematically formulated in the framework of functional principal component analysis using a set of vector spherical harmonics to represent the differences in celestial positions of the common objects. The weakest eigenvectors are computed, which describe the greatest deficiency of the link. The deficient or poorly determined terms are specific vector fields on the sphere which carry the largest errors of absolute astrometry using Gaia in reference to the ICRF. This analysis provides guidelines to the future development of the ICRF maximizing the accuracy of the link over the entire celestial sphere. A measure of robustness of a least-squares solution, which can be applied to any linear model fitting problem, is introduced to help discriminate between reference frame tie models of different degrees.
We here apply a novel technique selecting quasar candidates purely as sources with zero proper motions in the Gaia data release 2 (DR2). We demonstrate that this approach is highly efficient toward high Galactic latitudes with < 25% contamination from stellar sources. Such a selection technique offers a very pure sample completeness, since all cosmological point sources are selected regardless of their intrinsic spectral properties within the limiting magnitude of Gaia. We carry out a pilot-study by defining a sample compiled by including all Gaia-DR2 sources within one degree of the North Galactic Pole (NGP) selected to have proper motions consistent with zero within 2-sigma uncertainty. By cross-matching the sample to the optical Sloan Digital Sky Survey (SDSS) and the mid-infrared AllWISE photometric catalogues we investigate the colours of each of our sources. Together with already spectroscopically confirmed quasars we are therefore able to determine the efficiency of our selection. The majority of the zero proper motion sources have optical to mid-infrared colours consistent with known quasars. The remaining population may be contaminating stellar sources, but some may also be quasars with colours similar to stars. Spectroscopic follow-up of the zero proper motion sources is needed to unveil such a hitherto hidden quasar population. This approach has the potential to allow substantial progress on many important questions concerning quasars such as determining the fraction of dust-obscured quasars, the fraction of broad absorption line (BAL) quasars, and the metallicity distribution of damped Lyman-$alpha$ absorbers. The technique could also potentially reveal new types of quasars or even new classes of cosmological point sources.