Do you want to publish a course? Click here

Joint State Estimation and Communication over a State-Dependent Gaussian Multiple Access Channel

141   0   0.0 ( 0 )
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

A hybrid communication network with a common analog signal and an independent digital data stream as input to each node in a multiple access network is considered. The receiver/base-station has to estimate the analog signal with a given fidelity, and decode the digital streams with a low error probability. Treating the analog signal as a common state process, we set up a joint state estimation and communication problem in a Gaussian multiple access channel (MAC) with additive state. The transmitters have non-causal knowledge of the state process, and need to communicate independent data streams in addition to facilitating state estimation at the receiver. We first provide a complete characterization of the optimal trade-off between mean squared error distortion performance in estimating the state and the data rates for the message streams from two transmitting nodes. This is then generalized to an N-sender MAC. To this end, we show a natural connection between the state-dependent MAC model and a hybrid multi-sensor network in which a common source phenomenon is observed at N transmitting nodes. Each node encodes the source observations as well as an independent message stream over a Gaussian MAC without any state process. The receiver is interested estimating the source and all the messages. Again the distortion-rate performance is characterized.



rate research

Read More

The problem of channel coding over the Gaussian multiple-input multiple-output (MIMO) broadcast channel (BC) with additive independent Gaussian states is considered. The states are known in a noncausal manner to the encoder, and it wishes to minimize the amount of information that the receivers can learn from the channel outputs about the state sequence. The state leakage rate is measured as a normalized blockwise mutual information between the state sequence and the channel outputs sequences. We employ a new version of a state-dependent extremal inequality and show that Gaussian input maximizes the state-dependent version of Martons outer bound. Further we show that our inner bound coincides with the outer bound. Our result generalizes previously studied scalar Gaussian BC with state and MIMO BC without state.
This paper studies a two-user state-dependent Gaussian multiple-access channel (MAC) with state noncausally known at one encoder. Two scenarios are considered: i) each user wishes to communicate an independent message to the common receiver, and ii) the two encoders send a common message to the receiver and the non-cognitive encoder (i.e., the encoder that does not know the state) sends an independent individual message (this model is also known as the MAC with degraded message sets). For both scenarios, new outer bounds on the capacity region are derived, which improve uniformly over the best known outer bounds. In the first scenario, the two corner points of the capacity region as well as the sum rate capacity are established, and it is shown that a single-letter solution is adequate to achieve both the corner points and the sum rate capacity. Furthermore, the full capacity region is characterized in situations in which the sum rate capacity is equal to the capacity of the helper problem. The proof exploits the optimal-transportation idea of Polyanskiy and Wu (which was used previously to establish an outer bound on the capacity region of the interference channel) and the worst-case Gaussian noise result for the case in which the input and the noise are dependent.
This paper studies the problem of secure communication over a K-transmitter multiple access channel in the presence of an external eavesdropper, subject to a joint secrecy constraint (i.e., information leakage rate from the collection of K messages to an eavesdropper is made vanishing). As a result, we establish the joint secrecy achievable rate region. To this end, our results build upon two techniques in addition to the standard information-theoretic methods. The first is a generalization of Chia-El Gamals lemma on entropy bound for a set of codewords given partial information. The second is to utilize a compact representation of a list of sets that, together with properties of mutual information, leads to an efficient Fourier-Motzkin elimination. These two approaches could also be of independent interests in other contexts.
In this work we show how an improved lower bound to the error exponent of the memoryless multiple-access (MAC) channel is attained via the use of linear codes, thus demonstrating that structure can be beneficial even in cases where there is no capacity gain. We show that if the MAC channel is modulo-additive, then any error probability, and hence any error exponent, achievable by a linear code for the corresponding single-user channel, is also achievable for the MAC channel. Specifically, for an alphabet of prime cardinality, where linear codes achieve the best known exponents in the single-user setting and the optimal exponent above the critical rate, this performance carries over to the MAC setting. At least at low rates, where expurgation is needed, our approach strictly improves performance over previous results, where expurgation was used at most for one of the users. Even when the MAC channel is not additive, it may be transformed into such a channel. While the transformation is lossy, we show that the distributed structure gain in some nearly additive cases outweighs the loss, and thus the error exponent can improve upon the best known error exponent for these cases as well. Finally we apply a similar approach to the Gaussian MAC channel. We obtain an improvement over the best known achievable exponent, given by Gallager, for certain rate pairs, using lattice codes which satisfy a nesting condition.
Applications where multiple users communicate with a common server and desire low latency are common and increasing. This paper studies a network with two source nodes, one relay node and a destination node, where each source nodes wishes to transmit a sequence of messages, through the relay, to the destination, who is required to decode the messages with a strict delay constraint $T$. The network with a single source node has been studied in cite{Silas2019}. We start by introducing two important tools: the delay spectrum, which generalizes delay-constrained point-to-point transmission, and concatenation, which, similar to time sharing, allows combinations of different codes in order to achieve a desired regime of operation. Using these tools, we are able to generalize the two schemes previously presented in cite{Silas2019}, and propose a novel scheme which allows us to achieve optimal rates under a set of well-defined conditions. Such novel scheme is further optimized in order to improve the achievable rates in the scenarios where the conditions for optimality are not met.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا