Evolution of orbital angular momentum in a soft quasi-periodic structure with topological defects


Abstract in English

We propose a quasi-periodic structure (QPS) with topological defects. The analytical expression of the corresponding Fourier spectrum is derived, which reflects the combined effects of topological structure and quasitranslational symmetry. Light-matter interaction therein brings unusual diffraction characteristics with exotic evolution of orbital angular momentum (OAM). Long-range correlation of QPS resulted in multi-fractal and pairwise distribution of optical singularities. A general conversation law of OAM was revealed. A liquid crystal photopatterning QPS is fabricated to demonstrate the above characteristics. Dynamic reconfigurable manipulation of optical singularities was achieved. Our approach offers the opportunity to manipulate OAM with multiple degrees of freedom, which has promising applications in multi-channel quantum information processing and highdimensional quantum state generation.

Download