Costless: Optimizing Cost of Serverless Computing through Function Fusion and Placement


Abstract in English

Serverless computing has recently experienced significant adoption by several applications, especially Internet of Things (IoT) applications. In serverless computing, rather than deploying and managing dedicated virtual machines, users are able to deploy individual functions, and pay only for the time that their code is actually executing. However, since serverless platforms are relatively new, they have a completely different pricing model that depends on the memory, duration, and the number of executions of a sequence/workflow of functions. In this paper we present an algorithm that optimizes the price of serverless applications in AWS Lambda. We first describe the factors affecting price of serverless applications which include: (1) fusing a sequence of functions, (2) splitting functions across edge and cloud resources, and (3) allocating the memory for each function. We then present an efficient algorithm to explore different function fusion-placement solutions and find the solution that optimizes the applications price while keeping the latency under a certain threshold. Our results on image processing workflows show that the algorithm can find solutions optimizing the price by more than 35%-57% with only 5%-15% increase in latency. We also show that our algorithm can find non-trivial memory configurations that reduce both latency and price.

Download