Do you want to publish a course? Click here

Archival VLT/NaCo multiplicity investigation of exoplanet host stars

59   0   0.0 ( 0 )
 Added by Jeremy Dietrich
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Context: The influence of stellar multiplicity on planet formation is not yet well determined. Most planets are found using indirect detection methods via the small radial velocity or photometric variations of the primary star. These indirect detection methods are not sensitive to wide stellar companions. High-resolution imaging is thus needed to identify potential (sub)stellar companions to these stars. Aims: In this study we aim to determine the (sub)stellar multiplicity status of exoplanet host stars, that were not previously investigated for stellar multiplicity in the literature. For systems with non-detections we provide detailed detection limits to make them accessible for further statistical analysis. Methods: For this purpose we have employed previously unpublished high-resolution imaging data taken with VLT/NACO in a wide variety of different scientific programs and publicly accessible in the ESO archive. We used astrometric and theoretical population synthesis to determine whether detected companion candidates are likely to be bound or are merely chance-projected background objects. Results: We provide detailed detection limits for 39 systems and investigate 29 previously unknown companion candidates around five systems. In addition, we show for the first time that the previously known companion candidate around HD 204313 is likely a background object. By comparison with secondary epochs of 2MASS data we show that the companion candidates around GJ176 and HD 40307, as well as two of the sources around HD 85390, are likely background objects. For HD 113538 and HD 190984, as well as multiple further companion candidates around HD 85390, further observational data is required to test common proper motion of the companion candidates.

rate research

Read More

The vast majority of extrasolar planets are detected by indirect detection methods such as transit monitoring and radial velocity measurements. While these methods are very successful in detecting short-periodic planets, they are mostly blind to wide sub-stellar or even stellar companions on long orbits. In our study we present high resolution imaging observations of 63 exoplanet hosts carried out with the lucky imaging instrument AstraLux at the Calar Alto 2.2m telescope as well as with the new SPHERE high resolution adaptive optics imager at the ESO/VLT in the case of a known companion of specific interest. Our goal is to study the influence of stellar multiplicity on the planet formation process. We detected and confirmed 4 previously unknown stellar companions to the exoplanet hosts HD197037, HD217786, Kepler-21 and Kepler-68. In addition, we detected 11 new low-mass stellar companion candidates which must still be confirmed as bound companions. We also provide new astrometric and photometric data points for the recently discovered very close binary systems WASP-76 and HD2638. Furthermore, we show for the first time that the previously detected stellar companion to the HD185269 system is a very low mass binary. Finally we provide precise constraints on additional companions for all observed stars in our sample.
To understand the influence of additional wide stellar companions on planet formation, it is necessary to determine the fraction of multiple stellar systems amongst the known extrasolar planet population. We target recently discovered radial velocity exoplanetary systems observable from the northern hemisphere and with sufficiently high proper motion to detect stellar companions via direct imaging. We utilize the Calar Alto 2.2m telescope in combination with its lucky imaging camera AstraLux. 71 planet host stars have been observed so far, yielding one new low-mass (0.239 pm 0.022Modot) stellar companion, 4.5 arcsec (227AU of projected separation) northeast of the planet host star HD185269, detected via astrometry with AstraLux. We also present follow-up astrometry on three previously discovered stellar companions, showing for the first time common proper motion of the 0.5 arcsec companion to HD126614. Additionally, we determined the achieved detection limits for all targets, which allows us to characterize the detection space of possible further companions of these stars.
Precise and, if possible, accurate characterization of exoplanets cannot be dissociated from the characterization of their host stars. In this chapter we discuss different methods and techniques used to derive fundamental properties and atmospheric parameters of exoplanet-host stars. The main limitations, advantages and disadvantages, as well as corresponding typical measurement uncertainties of each method are presented.
118 - Elaine Simpson 2010
The stellar rotation periods of ten exoplanet host stars have been determined using newly analysed Ca II H & K flux records from Mount Wilson Observatory and Stromgren b, y photometric measurements from Tennessee State Universitys automatic photometric telescopes (APTs) at Fairborn Observatory. Five of the rotation periods have not previously been reported, with that of HD 130322 very strongly detected at Prot = 26.1 pm 3.5 d. The rotation periods of five other stars have been updated using new data. We use the rotation periods to derive the line-of-sight inclinations of the stellar rotation axes, which may be used to probe theories of planet formation and evolution when combined with the planetary orbital inclination found from other methods. Finally, we estimate the masses of fourteen exoplanets under the assumption that the stellar rotation axis is aligned with the orbital axis. We calculate the mass of HD 92788 b (28 MJ) to be within the low-mass brown dwarf regime and suggest that this object warrants further investigation to confirm its true nature.
We investigate the multiplicity properties of 408 B-type stars observed in the 30 Doradus region of the Large Magellanic Cloud with multi-epoch spectroscopy from the VLT-FLAMES Tarantula Survey (VFTS). We use a cross-correlation method to estimate relative radial velocities from the helium and metal absorption lines for each of our targets. Objects with significant radial-velocity variations (and with an amplitude larger than 16 km/s) are classified as spectroscopic binaries. We find an observed spectroscopic binary fraction (defined by periods of <10^3.5 d and mass ratios >0.1) for the B-type stars, f_B(obs) = 0.25 +/- 0.02, which appears constant across the field of view, except for the two older clusters (Hodge 301 and SL 639). These two clusters have significantly lower fractions of 0.08 +/- 0.08 and 0.10 +/- 0.09, respectively. Using synthetic populations and a model of our observed epochs and their potential biases, we constrain the intrinsic multiplicity properties of the dwarf and giant (i.e. relatively unevolved) B-type stars in 30 Dor. We obtain a present-day binary fraction f_B(true) = 0.58 +/- 0.11, with a flat period distribution. Within the uncertainties, the multiplicity properties of the B-type stars agree with those for the O stars in 30 Dor from the VFTS.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا