Do you want to publish a course? Click here

$B_c$ spectroscopy using highly improved staggered quarks

136   0   0.0 ( 0 )
 Added by Andrew Lytle
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We report on a calculation of $B_c$ ground state and radial excitation energies, obtained from heavy-charm highly improved staggered quark (HISQ) correlators computed on MILC gauge ensembles, with lattice spacings down to $a=0.044$ fm. Using HISQ valence quarks on progressively finer lattices allows us to simulate up to the $b$-quark mass. In particular we focus on the $B_c(2S)$ energy, which we compare with O(alpha_s)-improved non-relativistic QCD results computed on the same ensembles and recent experimental results from ATLAS.



rate research

Read More

We calculate semileptonic form factors for the decays $B_c to eta_c , l u$ and $B_c to J/psi , l u$ over the entire $q^2$ range, using a highly improved lattice quark action for charm at several lattice spacings down to $a=0.045$ fm. We have two ways of treating the $b$ quark: either with an $O(alpha_s)$ improved NRQCD formalism or by extrapolating a heavy mass $m_h$ to $m_b$ in the relativistic formalism. Comparison of the two approaches provides an important cross-check of methodologies in lattice QCD. Nonperturbative renormalisation of the currents in the relativistic theory also allows us then to fix NRQCD-charm normalisation for $b$ to $c$ decays such as $B to D$ and $B to D^*$.
235 - K. Y. Wong , R. M. Woloshyn 2007
It is well established that lattice artifacts can be suppressed substantially by the use of SU(3)-projected smeared links in the fermion action. An example is the Highly Improved Staggered Quark action where the ASQ-like effective links are constructed from reunitarized Fat7 links. A general procedure is presented for computing the derivative of the fermion action with respect to the base links (fermion force) - a key component in dynamical simulations using molecular dynamics evolution. The method is iterative and can be applied to actions with arbitrary levels of smearing and reunitarization. The cost of calculating the fermion force is determined for the ASQ action and the HISQ action. Test results show that calculating the HISQ force is about two times more expensive than the ASQ force.
We present the first computation in a program of lattice-QCD baryon physics using staggered fermions for sea and valence quarks. For this initial study, we present a calculation of the nucleon mass, obtaining $964pm16$ MeV with all sources of statistical and systematic errors controlled and accounted for. This result is the most precise determination to date of the nucleon mass from first principles. We use the highly-improved staggered quark action, which is computationally efficient. Three gluon ensembles are employed, which have approximate lattice spacings $a=0.09$ fm, $0.12$ fm, and $0.15$ fm, each with equal-mass $u$/$d$, $s$, and $c$ quarks in the sea. Further, all ensembles have the light valence and sea $u$/$d$ quarks tuned to reproduce the physical pion mass, avoiding complications from chiral extrapolations or nonunitarity. Our work opens a new avenue for precise calculations of baryon properties, which are both feasible and relevant to experiments in particle and nuclear physics.
We use a relativistic highly improved staggered quark action to discretize charm quarks on the lattice. We calculate the masses and the dispersion relation for heavy-heavy and heavy-light meson states, and show that for lattice spacings below .1 fm, the discretization errors are at the few percent level. We also discuss the prospects for accurate calculations at the few percent level of f_D_s, f_D, and the leptonic width of the psi and phi.
This work continues our program of lattice-QCD baryon physics using staggered fermions for both the sea and valence quarks. We present a proof-of-concept study that demonstrates, for the first time, how to calculate baryon matrix elements using staggered quarks for the valence sector. We show how to relate the representations of the continuum staggered flavor-taste group $text{SU}(8)_{FT}$ to those of the discrete lattice symmetry group. The resulting calculations yield the normalization factors relating staggered baryon matrix elements to their physical counterparts. We verify this methodology by calculating the isovector vector and axial-vector charges $g_V$ and $g_A$. We use a single ensemble from the MILC Collaboration with 2+1+1 flavors of sea quark, lattice spacing $aapprox 0.12$ fm, and a pion mass $M_piapprox305$ MeV. On this ensemble, we find results consistent with expectations from current conservation and neutron beta decay. Thus, this work demonstrates how highly-improved staggered quarks can be used for precision calculations of baryon properties, and, in particular, the isovector nucleon charges.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا