Do you want to publish a course? Click here

Experiments on cometary activity: ejection of dust aggregates from a sublimating water-ice surface

108   0   0.0 ( 0 )
 Added by Dorothea Bischoff
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The gas-driven dust activity of comets is still an unresolved question in cometary science. In the past, it was believed that comets are dirty snowballs and that the dust is ejected when the ice retreats. However, thanks to the various space missions to comets, it has become evident that comets have a much higher dust-to-ice ratio than previously thought and that most of the dust mass is ejected in large particles. Here we report on new comet-simulation experiments dedicated to the study of the ejection of dust aggregates caused by the sublimation of solid water ice. We find that dust ejection exactly occurs when the pressure of the water vapor above the ice surface exceeds the tensile strength plus the gravitational load of the covering dust layer. Furthermore, we observed the ejection of clusters of dust aggregates, whose sizes increase with increasing thickness of the ice-covering dust-aggregate layer. In addition, the trajectories of the ejected aggregates suggest that most of the aggregates obtained a non-vanishing initial velocity from the ejection event.



rate research

Read More

Models and observations suggest that ice-particle aggregation at and beyond the snowline dominates the earliest stages of planet-formation, which therefore is subject to many laboratory studies. However, the pressure-temperature gradients in proto-planetary disks mean that the ices are constantly processed, undergoing phase changes between different solid phases and the gas phase. Open questions remain as to whether the properties of the icy particles themselves dictate collision outcomes and therefore how effectively collision experiments reproduce conditions in pro- toplanetary environments. Previous experiments often yielded apparently contradictory results on collision outcomes, only agreeing in a temperature dependence setting in above $approx$ 210 K. By exploiting the unique capabilities of the NIMROD neutron scattering instrument, we characterized the bulk and surface structure of icy particles used in collision experiments, and studied how these structures alter as a function of temperature at a constant pressure of around 30 mbar. Our icy grains, formed under liquid nitrogen, undergo changes in the crystalline ice-phase, sublimation, sintering and surface pre-melting as they are heated from 103 to 247 K. An increase in the thickness of the diffuse surface layer from $approx$ 10 to $approx$ 30 {AA} ($approx$ 2.5 to 12 bilayers) proves increased molecular mobility at temperatures above $approx$ 210 K. As none of the other changes tie-in with the temperature trends in collisional outcomes, we conclude that the surface pre-melting phenomenon plays a key role in collision experiments at these temperatures. Consequently, the pressure-temperature environment, may have a larger influence on collision outcomes than previously thought.
We investigated fundamental processes of collisional sticking and fragmentation of dust aggregates by carrying out N-body simulations of submicron-sized icy dust monomers. We examined the condition for collisional growth of two colliding dust aggregates in a wide range of the mass ratio, 1-64. We found that the mass transfer from a larger dust aggregate to a smaller one is a dominant process in collisions with a mass ratio of 2-30 and impact velocity of approx 30-170 m s^-1. As a result, the critical velocity, v_fra, for fragmentation of the largest body is considerably reduced for such unequal-mass collisions; v_fra of collisions with a mass ratio of 3 is about half of that obtained from equal-mass collisions. The impact velocity is generally higher for collisions between dust aggregates with higher mass ratios because of the difference between the radial drift velocities in the typical condition of protoplanetary disks. Therefore, the reduced v_fra for unequal-mass collisions would delay growth of dust grains in the inner region of protoplanetary disks.
Context: The dwarf planet (1) Ceres - next target of the NASA Dawn mission - is the largest body in the asteroid main belt; although several observations of this body have been performed so far, the presence of surface water ice is still questioned. Aims: Our goal is to better understand the surface composition of Ceres, and to constrain the presence of exposed water ice. Methods: We acquired new visible and near-infrared spectra at the Telescopio Nazionale Galileo (TNG, La Palma, Spain), and reanalyzed literature spectra in the 3-$mu$m region. Results: We obtained the first rotationally-resolved spectroscopic observations of Ceres at visible wavelengths. Visible spectra taken one month apart at almost the same planetocentric coordinates show a significant slope variation (up to 3 %/10$^3AA$). A faint absorption centered at 0.67 $mu$m, possibly due to aqueous alteration, is detected in a subset of our spectra. The various explanations in the literature for the 3.06-$mu$m feature can be interpreted as due to a variable amount of surface water ice at different epochs. Conclusions: The remarkable short-term temporal variability of the visible spectral slope, and the changing shape of the 3.06-$mu$m band, can be hints of different amounts of water ice exposed on the surface of Ceres. This would be in agreement with the recent detection by the Herschel Space Observatory of localized and transient sources of water vapour over this dwarf planet.
67 - M. Honda , T. Kudo , S. Takatsuki 2016
We made near infrared multicolor imaging observations of a disk around Herbig Be star HD100546 using Gemini/NICI. K (2.2,$mu$m), H$_2$O ice (3.06,$mu$m), and L(3.8,$mu$m) disk images were obtained and we found the 3.1,$mu$m absorption feature in the scattered light spectrum, likely due to water ice grains at the disk surface. We compared the observed depth of the ice absorption feature with the disk model based on cite{Oka2012} including water ice photodesorption effect by stellar UV photons. The observed absorption depth can be explained by the both disk models with/without photodesorption effect within the measurement accuracy, but slightly favors the model with photodesorption effects, implying that the UV photons play an important role on the survival/destruction of ice grains at the Herbig Ae/Be disk surface. Further improvement on the accuracy of the observations of the water ice absorption depth is needed to constrain the disk models.
Comets are made of volatile and refractory material and naturally experience various degrees of sublimation as they orbit around the Sun. This gas release, accompanied by dust, represents what is traditionally described as activity. Although the basic principles are well established, most details remain elusive, especially regarding the mechanisms by which dust is detached from the surface and subsequently accelerated by the gas flows surrounding the nucleus. During its 2 years rendez-vous with comet 67P/Churyumov-Gerasimenko, ESAs Rosetta has observed cometary activity with unprecedented details, in both the inbound and outbound legs of the comets orbit. This trove of data provides a solid ground on which new models of activity can be built. In this chapter, we review how activity manifests at close distance from the surface, establish a nomenclature for the different types of observed features, discuss how activity is at the same time transforming and being shaped by the topography, and finally address several potential mechanisms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا