Foliations, contact structures and their interactions in dimension three


Abstract in English

We survey the interactions between foliations and contact structures in dimension three, with an emphasis on sutured manifolds and invariants of sutured contact manifolds. This paper contains two original results: the fact that a closed orientable irreducible 3-manifold M with nonzero second homol-ogy carries a hypertight contact structure and the fact that an orientable, taut, balanced sutured 3-manifold is not a product if and only if it carries a contact structure with nontrivial cylindrical contact homology. The proof of the second statement uses the Handel-Miller theory of end-periodic diffeomorphisms of end-periodic surfaces.

Download