Construction of optimal locally recoverable codes and connection with hypergraph


Abstract in English

Recently, it was discovered by several authors that a $q$-ary optimal locally recoverable code, i.e., a locally recoverable code archiving the Singleton-type bound, can have length much bigger than $q+1$. This is quite different from the classical $q$-ary MDS codes where it is conjectured that the code length is upper bounded by $q+1$ (or $q+2$ for some special case). This discovery inspired some recent studies on length of an optimal locally recoverable code. It was shown in cite{LXY} that a $q$-ary optimal locally recoverable code is unbounded for $d=3,4$. Soon after, it was proved that a $q$-ary optimal locally recoverable code with distance $d$ and locality $r$ can have length $Omega_{d,r}(q^{1 + 1/lfloor(d-3)/2rfloor})$. Recently, an explicit construction of $q$-ary optimal locally recoverable codes for distance $d=5,6$ was given in cite{J18} and cite{BCGLP}. In this paper, we further investigate construction optimal locally recoverable codes along the line of using parity-check matrices. Inspired by classical Reed-Solomon codes and cite{J18}, we equip parity-check matrices with the Vandermond structure. It is turns out that a parity-check matrix with the Vandermond structure produces an optimal locally recoverable code must obey certain disjoint property for subsets of $mathbb{F}_q$. To our surprise, this disjoint condition is equivalent to a well-studied problem in extremal graph theory. With the help of extremal graph theory, we succeed to improve all of the best known results in cite{GXY} for $dgeq 7$. In addition, for $d=6$, we are able to remove the constraint required in cite{J18} that $q$ is even.

Download