Nonperturbative structure of the ghost-gluon kernel


Abstract in English

The ghost-gluon scattering kernel is a special correlation function that is intimately connected with two fundamental vertices of the gauge sector of QCD: the ghost-gluon vertex, which may be obtained from it through suitable contraction, and the three-gluon vertex, whose Slavnov-Taylor identity contains that kernel as one of its main ingredients. In this work we present a detailed nonperturbative study of the five form factors comprising it, using as starting point the `one-loop dressed approximation of the dynamical equations governing their evolution. The analysis is carried out for arbitrary Euclidean momenta, and makes extensive use of the gluon propagator and the ghost dressing function, whose infrared behavior has been firmly established from a multitude of continuum studies and large-volume lattice simulations. In addition, special Ansatze are employed for the vertices entering in the relevant equations, and their impact on the results is scrutinized in detail. Quite interestingly, the veracity of the approximations employed may be quantitatively tested by appealing to an exact relation, which fixes the value of a special combination of the form factors under construction. The results obtained furnish the two form factors of the ghost-gluon vertex for arbitrary momenta, and, more importantly, pave the way towards the nonperturbative generalization of the Ball-Chiu construction for the longitudinal part of the three-gluon vertex.

Download