No Arabic abstract
The compactification from the 11-dimensional Horava-Witten orbifold to 5-dimensional heterotic M-theory on a Schoen Calabi-Yau threefold is reviewed, as is the specific $SU(4)$ vector bundle leading to the heterotic standard model in the observable sector. A generic formalism for a consistent hidden sector gauge bundle, within the context of strongly coupled heterotic M-theory, is presented. Anomaly cancellation and the associated bulk space 5-branes are discussed in this context. The further compactification to a 4-dimensional effective field theory on a linearized BPS double domain wall is then presented to order $kappa_{11}^{4/3}$. Specifically, the generic constraints required for anomaly cancellation and by the linearized domain wall solution, the constraints imposed by the necessity for positive, perturbative squared gauge couplings to this order and the restrictions on the $D$-terms for preserving or spontaneously breaking $N=1$ supersymmetry are presented.
The compactification from the eleven-dimensional Hov{r}ava-Witten orbifold to five-dimensional heterotic M-theory on a Schoen Calabi-Yau threefold is reviewed, as is the specific $SU(4)$ vector bundle leading to the heterotic standard model in the observable sector. Within the context of strongly coupled heterotic M-theory, a formalism for consistent hidden-sector bundles associated with a single line bundle is presented, and a specific line bundle is introduced as a concrete example. Anomaly cancellation and the associated bulk space five-branes are discussed in this context, as is the constraint that the hidden sector bundle be compatible with the slope-stability requirements of the observable sector $SU(4)$ gauge bundle. The further compactification to a four-dimensional effective theory on a linearized BPS double domain wall is then presented to order $kappa_{11}^{4/3}$. Specifically, the generic constraints required for anomaly cancellation and the restrictions imposed by positive squared gauge couplings to order $kappa_{11}^{4/3}$ are presented in detail. Three additional constraints are imposed, one guaranteeing that the $S^{1}/{mathbb{Z}}_{2}$ orbifold length is sufficiently larger than the average Calabi-Yau radius, and two enforcing that the hidden sector be compatible with both the unification mass scale and unified gauge coupling of the $SO(10)$ group in the observable sector. Finally, the expression for the Fayet-Iliopoulos term associated with an anomalous $U(1)$ symmetry is presented and its role in $N=1$ supersymmetry in the low-energy effective theory is discussed. It is shown that $N=1$ supersymmetry can be preserved by cancelling the tree-level and genus-one contributions against each another.
We present a new perspective on the nature of quark and gluon condensates in quantum chromodynamics. We suggest that the spatial support of QCD condensates is restricted to the interiors of hadrons, since these condensates arise due to the interactions of confined quarks and gluons. An analogy is drawn with order parameters like the Cooper pair condensate and spontaneous magnetization experimentally measured in finite samples in condensed matter physics. Our picture explains the results of recent studies which find no significant signal for the vacuum gluon condensate. We also give a general discussion of condensates in asymptotically free vectorial and chiral gauge theories.
Quantum field theories of strongly interacting matter sometimes have a useful holographic description in terms of the variables of a gravitational theory in higher dimensions. This duality maps time dependent physics in the gauge theory to time dependent solutions of the Einstein equations in the gravity theory. In order to better understand the process by which real world theories such as QCD behave out of thermodynamic equilibrium, we study time dependent perturbations to states in a model of a confining, strongly coupled gauge theory via holography. Operationally, this involves solving a set of non-linear Einstein equations supplemented with specific time dependent boundary conditions. The resulting solutions allow one to comment on the timescale by which the perturbed states thermalize, as well as to quantify the properties of the final state as a function of the perturbation parameters. We comment on the influence of the dual gauge theorys confinement scale on these results, as well as the appearance of a previously anticipated universal scaling regime in the abrupt quench limit.
We reconsider the ingredients of moduli stabilization in heterotic M-theory. On this line we close a gap in the literature deriving the Kaehler potential dependence on vector bundle moduli and charged matter. Crucial in this derivation is our superspace formulation of 5d heterotic M-theory taking into account the Bianchi identities modified by brane terms. Likewise, we obtain the Fayet-Iliopolous terms due to brane localised anomalous U(1)s. After assembling perturbative and non-perturbative contributions to the superpotential, we study supersymmetric (adS) vacua. It is found that the susy condition decouples the bundle moduli from the geometric moduli. We show that M-theory supersymmetric vacua without five-branes can be found, albeit not at phenomenologically interesting values of the geometric moduli. This result is fairly independent of the choice of vector bundle at the observable brane.
According to common lore, Equations of State of field theories with gravity duals tend to be soft, with speeds of sound either below or around the conformal value of $v_s=1/sqrt{3}$. This has important consequences in particular for the physics of compact stars, where the detection of two solar mass neutron stars has been shown to require very stiff equations of state. In this paper, we show that no speed limit exists for holographic models at finite density, explicitly constructing examples where the speed of sound becomes arbitrarily close to that of light. This opens up the possibility of building hybrid stars that contain quark matter obeying a holographic equation of state in their cores.