Fast Non-Adiabatic Dynamics of Many-Body Quantum Systems


Abstract in English

Modeling many-body quantum systems with strong interactions is one of the core challenges of modern physics. A range of methods has been developed to approach this task, each with its own idiosyncrasies, approximations, and realm of applicability. Perhaps the most successful and ubiquitous of these approaches is density functional theory (DFT). Its Kohn-Sham formulation has been the basis for many fundamental physical insights, and it has been successfully applied to fields as diverse as quantum chemistry, condensed matter and dense plasmas. Despite the progress made by DFT and related schemes, however, there remain many problems that are intractable for existing methods. In particular, many approaches face a huge computational barrier when modeling large numbers of coupled electrons and ions at finite temperature. Here, we address this shortfall with a new approach to modeling many-body quantum systems. Based on the Bohmian trajectories formalism, our new method treats the full particle dynamics with a considerable increase in computational speed. As a result, we are able to perform large-scale simulations of coupled electron-ion systems without employing the adiabatic Born-Oppenheimer approximation.

Download