Do you want to publish a course? Click here

Predicting the Sparticle Spectrum from Partially-Composite Supersymmetry

113   0   0.0 ( 0 )
 Added by Andrew Miller
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We use the idea of partial compositeness in a minimal supersymmetric model to relate the fermion and sfermion masses. By assuming that the Higgs and third-generation matter is (mostly) elementary, while the first- and second-generation matter is (mostly) composite, the Yukawa coupling hierarchy can be explained by a linear mixing between elementary states and composite operators with large anomalous dimensions. If the composite sector also breaks supersymmetry, then composite sfermions such as selectrons are predicted to be much heavier than the lighter elementary stops. This inverted sfermion mass hierarchy is consistent with current experimental limits that prefer light stops ($mathcal{O}(10)$ TeV) to accommodate the 125 GeV Higgs boson, while predicting heavy first- and second-generation sfermions (${gtrsim 100}$ TeV) as indicated by flavor physics experiments. The underlying dynamics can be modelled by a dual 5D gravity theory that also predicts a gravitino dark matter candidate ($gtrsim$ keV), together with gauginos and Higgsinos, ranging from 10-90 TeV, that are split from the heavier first- and second-generation sfermion spectrum. This intricate connection between the fermion and sfermion mass spectrum can be tested at future experiments.

rate research

Read More

We consider a supersymmetric model that uses partial compositeness to explain the fermion mass hierarchy and predict the sfermion mass spectrum. The Higgs and third-generation matter superfields are elementary, while the first two matter generations are composite. Linear mixing between elementary superfields and supersymmetric operators with large anomalous dimensions is responsible for simultaneously generating the fermion and sfermion mass hierarchies. After supersymmetry is broken by the strong dynamics, partial compositeness causes the first- and second-generation sfermions to be split from the much lighter gauginos and third-generation sfermions. This occurs even though the tree-level soft masses of the elementary fields are subject to large radiative corrections from the composite sector, which we calculate in the gravitational dual theory using the AdS/CFT correspondence. The sfermion mass scale is constrained by the observed 125 GeV Higgs boson, leading to stop masses and gauginos around 10-100 TeV and the first two generation sfermion masses around 100-1000 TeV. This gives rise to a splitlike supersymmetric model that explains the fermion mass hierarchy while simultaneously predicting an inverted sfermion mass spectrum consistent with LHC and flavor constraints. Finally, the lightest supersymmetric particle is a gravitino in the keV to TeV range, which can play the role of dark matter.
Perturbative supersymmetry breaking on the landscape of string vacua is expected to favor large soft terms as a power-law or log distribution, but tempered by an anthropic veto of inappropriate vacua or vacua leading to too large a value for the derived weak scale -- a violation of the atomic principle. Indeed, scans of such vacua yield a statistical prediction for light Higgs boson mass m_h~ 125 GeV with sparticles (save possibly light higgsinos) typically beyond LHC reach. In contrast, models of dynamical SUSY breaking (DSB) -- with a hidden sector gauge coupling g^2 scanned uniformly -- lead to gaugino condensation and a uniform distribution of soft parameters on a log scale. Then soft terms are expected to be distributed as $m_{rm soft}^{-1}$ favoring small values. A scan of DSB soft terms generally leads to $m_hll 125$ GeV and sparticle masses usually below LHC limits. Thus, the DSB landscape scenario seems excluded from LHC search results. An alternative is that the exponential suppression of the weak scale is set anthropically on the landscape via the atomic principle.
While it is often stated that the notion of electroweak (EW) naturalness in supersymmetric models is subjective, fuzzy and model-dependent, here we argue the contrary: electroweak naturalness can be elevated to a {it principle} which is both objective and predictive. We demonstrate visually when too much fine-tuning sets in at the electroweak scale which corresponds numerically to the measure Delta_{BG}~Delta_{EW}> 30. While many constrained SUSY models are already excluded by this value, we derive updated upper bounds on sparticle masses within the two-extra parameter non-universal Higgs model (NUHM2). We confirm the classic Barbieri-Giudice (BG) result that Delta_{BG}<30 implies mu <350 GeV. However, by combining dependent soft terms which appear as multiples of m_{3/2} in supergravity models, then we obtain m(gluino)< 4 TeV as opposed to the BG result that m(gluino)<350 GeV. We compare the NUHM2 results to a similar scan in the pMSSM with 19 weak scale parameters. In the pMSSM with complete one-loop scalar potential plus dominant two-loop terms, then a m(gluino)<7 TeV bound is found. Our tabulation of upper bounds provides a target for experimenters seeking to discover or else falsify the existence of weak scale supersymmetry. In an Appendix, we show contributions to the naturalness measure from one-loop contributions to the weak scale scalar potential.
In this paper, we consider a novel realization of the Dynamical Dark Matter (DDM) framework in which the ensemble of particles which collectively constitute the dark matter are the composite states of a strongly-coupled conformal field theory. Cosmological abundances for these states are then generated through mixing with an additional, elementary state. As a result, the physical fields of the DDM dark sector at low energies are partially composite -- i.e., admixtures of elementary and composite states. Interestingly, we find that the degree of compositeness exhibited by these states varies across the DDM ensemble. We calculate the masses, lifetimes, and abundances of these states -- along with the effective equation of state of the entire ensemble -- by considering the gravity dual of this scenario in which the ensemble constituents are realized as the Kaluza-Klein states associated with a scalar propagating within a slice of five-dimensional anti-de Sitter (AdS) space. Surprisingly, we find that the warping of the AdS space gives rise to parameter-space regions in which the decay widths of the dark-sector constituents vary non-monotonically with their masses. We also find that there exists a maximum degree of AdS warping for which a phenomenologically consistent dark-sector ensemble can emerge. Our results therefore suggest the existence of a potentially rich cosmology associated with partially composite DDM.
75 - Are R. Raklev 2007
We present our work on reconstructing sparticle masses in purely hadronic decay chains, using the $k_T$ jet-algorithm on Monte Carlo simulated events at LHC energies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا