No Arabic abstract
Time reversal and spatial inversion are two key symmetries for conventional Bardeen-Cooper-Schrieffer (BCS) superconductivity. Breaking inversion symmetry can lead to mixed-parity Cooper pairing and unconventional superconducting properties. Two-dimensional (2D) NbSe$_2$ has emerged as a new non-centrosymmetric superconductor with the unique out-of-plane or Ising spin-orbit coupling (SOC). Here, we report the observation of an unusual continuous paramagnetic-limited superconductor-normal metal transition in 2D NbSe$_2$. Using tunneling spectroscopy under high in-plane magnetic fields, we observe a continuous closing of the superconducting gap at the upper critical field at low temperatures, in stark contrast to the abrupt first-order transition observed in BCS thin film superconductors. The paramagnetic-limited continuous transition arises from a large spin susceptibility of the superconducting phase due to the Ising SOC. The result is further supported by self-consistent mean-field calculations based on the ab initio band structure of 2D NbSe$_2$. Our findings establish 2D NbSe$_2$ as a promising platform for exploring novel spin-dependent superconducting phenomena and device concepts, such as equal-spin Andreev reflection and topological superconductivity.
2H-NbSe2 is one of the most widely researched transition metal dichalcogenide (TMD) superconductors, which undergoes charge-density wave (CDW) transition at TCDW about 33 K and superconducting transition at Tc of 7.3 K. To explore the relation between its superconductivity and Fermi surface nesting, we combined S substitution with Cu intercalation in 2H-NbSe2 to make CuxNbSe2-ySy. Upon systematic substitution of S and intercalation of Cu ions into 2H-NbSe2, we found that when the Cu and S contents increases, the Tc decreases in CuxNbSe2-ySy. While at higher x and y values, Tc keeps a constant value near 2 K, which is not commonly observed for a layered TMD. For comparison, we found the simultaneous substitution of Nb by Cu and Se by S in CuxNb1-xSe2-ySy lowered the Tc substantially faster. We construct a superconducting phase diagrams for our double-doping compounds in contrast with the related single-ions doping systems.
We show the results of two-terminal and four-terminal transport measurements on few-layer NbSe$_2$ devices at large current bias. In all the samples measured, transport characteristics at high bias are dominated by a series of resistance jumps due to nucleation of phase slip lines, the two dimensional analogue of phase slip centers. In point contact devices the relatively simple and homogeneous geometry enables a quantitative comparison with the model of Skocpol, Beasley and Tinkham. In extended crystals the nucleation of a single phase slip line can be induced by mechanical stress of a region whose width is comparable to the charge imbalance equilibration length.
Two-dimensional transition metal dichalcogenides with strong spin-orbit interactions and valley-dependent Berry curvature effects have attracted tremendous recent interests. Although novel single-particle and excitonic phenomena related to spin-valley coupling have been extensively studied, effects of spin-momentum locking on collective quantum phenomena remain unexplored. Here we report an observation of superconducting monolayer NbSe$_2$ with an in-plane upper critical field over six times of the Pauli paramagnetic limit by magneto-transport measurements. The effect can be understood in terms of the competing Zeeman effect and large intrinsic spin-orbit interactions in non-centrosymmetric NbSe$_2$ monolayers, where the electronic spin is locked to the out-of-plane direction. Our results provide a strong evidence of unconventional Ising pairing protected by spin-momentum locking and open up a new avenue for studies of non-centrosymmetric superconductivity with unique spin and valley degrees of freedom in the exact two-dimensional limit.
We present a high energy-resolution inelastic x-ray scattering data investigation of the charge-density-wave (CDW) soft phonon mode upon entering the superconducting state in $2H$-NbSe$_2$. Measurements were done close to the CDW ordering wavevector $mathbf{q}_{CDW}$ at $mathbf{q}=mathbf{q}_{CDW}+(0,0,l)$,$0.15leq l leq 0.5$, for $T=10,rm{K}$ (CDW order) and $3.8,rm{K}$ (CDW order + superconductivity). We observe changes of the phonon lineshape that are characteristic for systems with strong electron-phonon coupling in the presence of a superconducting energy gap $2Delta_c$ and from which we can demonstrate an $l$-dependence of the superconducting gap. Reversely, our data imply that the CDW energy gap is strongly localized along the $c^*$ direction. The confinement of the CDW gap to a very small momentum region explains the rather low competition and easy coexistence of CDW order and superconductivity in $2H$-NbSe$_2$. However, the energy gained by opening $Delta_{CDW}$ seems to be too small to be the driving force of the phase transition at $T_{CDW}=33,rm{K}$ , which is better described as an electron-phonon coupling driven structural phase transition.
The sharp suppression of the de-Haas van-Alphen oscillations observed in the mixed superconducting (SC) state of the heavy fermion compound URu$_{2}$Si$% _{2}$ is shown to confirm a theoretical prediction of a narrow double-stage SC phase transition, smeared by fluctuations, in a 3D paramagnetically-limitted superconductor. The predicted scenario of a second order transition to a nonuniform (FFLO) state followed by a first order transition to a uniform SC state, obtained by using a non-perturbative approach, is also found to be consistent with recent thermal conductivity measurements performed on this material.