Do you want to publish a course? Click here

Multi-dimensional BSDEs driven by $G$-Brownian motion and related system of fully nonlinear PDEs

84   0   0.0 ( 0 )
 Added by Guomin Liu
 Publication date 2018
  fields
and research's language is English
 Authors Guomin Liu




Ask ChatGPT about the research

In this paper, we study the well-posedness of multi-dimensional backward stochastic differential equations driven by $G$-Brownian motion ($G$-BSDEs) with diagonal generators, the $z$ parts of whose $l$-th components only depend on the $l$-th columns. The existence and uniqueness of solutions are obtained via a contraction argument for $Y$ component and a backward iteration of local solutions. Furthermore, we show that, the solution of multi-dimensional $G$-BSDE in a Markovian framework provides a probabilistic formula for the viscosity solution of a system of nonlinear parabolic partial differential equations.



rate research

Read More

94 - Hanwu Li , Guomin Liu 2021
We consider the well-posedness problem of multi-dimensional reflected backward stochastic differential equations driven by $G$-Brownian motion ($G$-BSDEs) with diagonal generators. Two methods, i.e., the penalization method and the Picard iteration argument, are provided to prove the existence and uniqueness of solutions. We also study its connection with the obstacle problem of a system of fully nonlinear PDEs.
169 - Hanwu Li , Shige Peng 2017
In this paper, we study the reflected solutions of one-dimensional backward stochastic differential equations driven by G-Brownian motion (RGBSDE for short). The reflection keeps the solution above a given stochastic process. In order to derive the uniqueness of reflected GBSDEs, we apply a martingale condition instead of the Skorohod condition. Similar to the classical case, we prove the existence by approximation via penalization.
172 - Dong Cao , Shanjian Tang 2019
In this paper, we consider a reflected backward stochastic differential equation driven by a $G$-Brownian motion ($G$-BSDE), with the generator growing quadratically in the second unknown. We obtain the existence by the penalty method, and a priori estimates which implies the uniqueness, for solutions of the $G$-BSDE. Moreover, focusing our discussion at the Markovian setting, we give a nonlinear Feynman-Kac formula for solutions of a fully nonlinear partial differential equation.
132 - Fenfen Yang 2018
We establish Harnack inequality and shift Harnack inequality for stochastic differential equation driven by $G$-Brownian motion. As applications, the uniqueness of invariant linear expectations and estimates on the $sup$-kernel are investigated, where the $sup$-kernel is introduced in this paper for the first time.
106 - Xing Huang , Fen-Fen Yang 2020
Sufficient and necessary conditions are presented for the comparison theorem of path dependent $G$-SDEs. Different from the corresponding study in path independent $G$-SDEs, a probability method is applied to prove these results. Moreover, the results extend the ones in the linear expectation case.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا