Do you want to publish a course? Click here

How to Use Heuristics for Differential Privacy

167   0   0.0 ( 0 )
 Added by Aaron Roth
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

We develop theory for using heuristics to solve computationally hard problems in differential privacy. Heuristic approaches have enjoyed tremendous success in machine learning, for which performance can be empirically evaluated. However, privacy guarantees cannot be evaluated empirically, and must be proven --- without making heuristic assumptions. We show that learning problems over broad classes of functions can be solved privately and efficiently, assuming the existence of a non-private oracle for solving the same problem. Our first algorithm yields a privacy guarantee that is contingent on the correctness of the oracle. We then give a reduction which applies to a class of heuristics which we call certifiable, which allows us to convert oracle-dependent privacy guarantees to worst-case privacy guarantee that hold even when the heuristic standing in for the oracle might fail in adversarial ways. Finally, we consider a broad class of functions that includes most classes of simple boolean functions studied in the PAC learning literature, including conjunctions, disjunctions, parities, and discrete halfspaces. We show that there is an efficient algorithm for privately constructing synthetic data for any such class, given a non-private learning oracle. This in particular gives the first oracle-efficient algorithm for privately generating synthetic data for contingency tables. The most intriguing question left open by our work is whether or not every problem that can be solved differentially privately can be privately solved with an oracle-efficient algorithm. While we do not resolve this, we give a barrier result that suggests that any generic oracle-efficient reduction must fall outside of a natural class of algorithms (which includes the algorithms given in this paper).



rate research

Read More

Sensitive statistics are often collected across sets of users, with repeated collection of reports done over time. For example, trends in users private preferences or software usage may be monitored via such reports. We study the collection of such statistics in the local differential privacy (LDP) model, and describe an algorithm whose privacy cost is polylogarithmic in the number of changes to a users value. More fundamentally---by building on anonymity of the users reports---we also demonstrate how the privacy cost of our LDP algorithm can actually be much lower when viewed in the central model of differential privacy. We show, via a new and general privacy amplification technique, that any permutation-invariant algorithm satisfying $varepsilon$-local differential privacy will satisfy $(O(varepsilon sqrt{log(1/delta)/n}), delta)$-central differential privacy. By this, we explain how the high noise and $sqrt{n}$ overhead of LDP protocols is a consequence of them being significantly more private in the central model. As a practical corollary, our results imply that several LDP-based industrial deployments may have much lower privacy cost than their advertised $varepsilon$ would indicate---at least if reports are anonymized.
Traditional differential privacy is independent of the data distribution. However, this is not well-matched with the modern machine learning context, where models are trained on specific data. As a result, achieving meaningful privacy guarantees in ML often excessively reduces accuracy. We propose Bayesian differential privacy (BDP), which takes into account the data distribution to provide more practical privacy guarantees. We also derive a general privacy accounting method under BDP, building upon the well-known moments accountant. Our experiments demonstrate that in-distribution samples in classic machine learning datasets, such as MNIST and CIFAR-10, enjoy significantly stronger privacy guarantees than postulated by DP, while models maintain high classification accuracy.
84 - Xingyu Zhou , Jian Tan 2020
Motivated by the increasing concern about privacy in nowadays data-intensive online learning systems, we consider a black-box optimization in the nonparametric Gaussian process setting with local differential privacy (LDP) guarantee. Specifically, the rewards from each user are further corrupted to protect privacy and the learner only has access to the corrupted rewards to minimize the regret. We first derive the regret lower bounds for any LDP mechanism and any learning algorithm. Then, we present three almost optimal algorithms based on the GP-UCB framework and Laplace DP mechanism. In this process, we also propose a new Bayesian optimization (BO) method (called MoMA-GP-UCB) based on median-of-means techniques and kernel approximations, which complements previous BO algorithms for heavy-tailed payoffs with a reduced complexity. Further, empirical comparisons of different algorithms on both synthetic and real-world datasets highlight the superior performance of MoMA-GP-UCB in both private and non-private scenarios.
253 - Lixin Fan , Kam Woh Ng , Ce Ju 2020
This paper investigates capabilities of Privacy-Preserving Deep Learning (PPDL) mechanisms against various forms of privacy attacks. First, we propose to quantitatively measure the trade-off between model accuracy and privacy losses incurred by reconstruction, tracing and membership attacks. Second, we formulate reconstruction attacks as solving a noisy system of linear equations, and prove that attacks are guaranteed to be defeated if condition (2) is unfulfilled. Third, based on theoretical analysis, a novel Secret Polarization Network (SPN) is proposed to thwart privacy attacks, which pose serious challenges to existing PPDL methods. Extensive experiments showed that model accuracies are improved on average by 5-20% compared with baseline mechanisms, in regimes where data privacy are satisfactorily protected.
Many commonly used learning algorithms work by iteratively updating an intermediate solution using one or a few data points in each iteration. Analysis of differential privacy for such algorithms often involves ensuring privacy of each step and then reasoning about the cumulative privacy cost of the algorithm. This is enabled by composition theorems for differential privacy that allow releasing of all the intermediate results. In this work, we demonstrate that for contractive iterations, not releasing the intermediate results strongly amplifies the privacy guarantees. We describe several applications of this new analysis technique to solving convex optimization problems via noisy stochastic gradient descent. For example, we demonstrate that a relatively small number of non-private data points from the same distribution can be used to close the gap between private and non-private convex optimization. In addition, we demonstrate that we can achieve guarantees similar to those obtainable using the privacy-amplification-by-sampling technique in several natural settings where that technique cannot be applied.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا