Preserving Measurements for Optimal State Discrimination over Quantum Channels


Abstract in English

In this work, we consider optimal state discrimination for a quantum system that interacts with an environment, i.e., states evolve under a quantum channel. We show the conditions on a quantum channel and an ensemble of states such that a measurement for optimal state discrimination is preserved. In particular, we show that when an ensemble of states with equal {it a priori} probabilities is given, an optimal measurement can be preserved over any quantum channel by applying local operations and classical communication, that is, by manipulating the quantum states before and after the channel application. Examples are provided for illustration. Our results can be readily applied to quantum communication protocols over various types of noise.

Download