Do you want to publish a course? Click here

An Adaptive Oversampling Learning Method for Class-Imbalanced Fault Diagnostics and Prognostics

84   0   0.0 ( 0 )
 Added by Wenfang Lin
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Data-driven fault diagnostics and prognostics suffers from class-imbalance problem in industrial systems and it raises challenges to common machine learning algorithms as it becomes difficult to learn the features of the minority class samples. Synthetic oversampling methods are commonly used to tackle these problems by generating the minority class samples to balance the distributions between majority and minority classes. However, many of oversampling methods are inappropriate that they cannot generate effective and useful minority class samples according to different distributions of data, which further complicate the process of learning samples. Thus, this paper proposes a novel adaptive oversampling technique: EM-based Weighted Minority Oversampling TEchnique (EWMOTE) for industrial fault diagnostics and prognostics. The methods comprises a weighted minority sampling strategy to identify hard-to-learn informative minority fault samples and Expectation Maximization (EM) based imputation algorithm to generate fault samples. To validate the performance of the proposed methods, experiments are conducted in two real datasets. The results show that the method could achieve better performance on not only binary class, but multi-class imbalance learning task in different imbalance ratios than other oversampling-based baseline models.



rate research

Read More

The Synthetic Minority Oversampling TEchnique (SMOTE) is widely-used for the analysis of imbalanced datasets. It is known that SMOTE frequently over-generalizes the minority class, leading to misclassifications for the majority class, and effecting the overall balance of the model. In this article, we present an approach that overcomes this limitation of SMOTE, employing Localized Random Affine Shadowsampling (LoRAS) to oversample from an approximated data manifold of the minority class. We benchmarked our algorithm with 14 publicly available imbalanced datasets using three different Machine Learning (ML) algorithms and compared the performance of LoRAS, SMOTE and several SMOTE extensions that share the concept of using convex combinations of minority class data points for oversampling with LoRAS. We observed that LoRAS, on average generates better ML models in terms of F1-Score and Balanced accuracy. Another key observation is that while most of the extensions of SMOTE we have tested, improve the F1-Score with respect to SMOTE on an average, they compromise on the Balanced accuracy of a classification model. LoRAS on the contrary, improves both F1 Score and the Balanced accuracy thus produces better classification models. Moreover, to explain the success of the algorithm, we have constructed a mathematical framework to prove that LoRAS oversampling technique provides a better estimate for the mean of the underlying local data distribution of the minority class data space.
Real-world large-scale datasets are heteroskedastic and imbalanced -- labels have varying levels of uncertainty and label distributions are long-tailed. Heteroskedasticity and imbalance challenge deep learning algorithms due to the difficulty of distinguishing among mislabeled, ambiguous, and rare examples. Addressing heteroskedasticity and imbalance simultaneously is under-explored. We propose a data-dependent regularization technique for heteroskedastic datasets that regularizes different regions of the input space differently. Inspired by the theoretical derivation of the optimal regularization strength in a one-dimensional nonparametric classification setting, our approach adaptively regularizes the data points in higher-uncertainty, lower-density regions more heavily. We test our method on several benchmark tasks, including a real-world heteroskedastic and imbalanced dataset, WebVision. Our experiments corroborate our theory and demonstrate a significant improvement over other methods in noise-robust deep learning.
Class imbalanced datasets are common in real-world applications that range from credit card fraud detection to rare disease diagnostics. Several popular classification algorithms assume that classes are approximately balanced, and hence build the accompanying objective function to maximize an overall accuracy rate. In these situations, optimizing the overall accuracy will lead to highly skewed predictions towards the majority class. Moreover, the negative business impact resulting from false positives (positive samples incorrectly classified as negative) can be detrimental. Many methods have been proposed to address the class imbalance problem, including methods such as over-sampling, under-sampling and cost-sensitive methods. In this paper, we consider the over-sampling method, where the aim is to augment the original dataset with synthetically created observations of the minority classes. In particular, inspired by the recent advances in generative modelling techniques (e.g., Variational Inference and Generative Adversarial Networks), we introduce a new oversampling technique based on variational autoencoders. Our experiments show that the new method is superior in augmenting datasets for downstream classification tasks when compared to traditional oversampling methods.
Semi-Supervised Learning (SSL) has achieved great success in overcoming the difficulties of labeling and making full use of unlabeled data. However, SSL has a limited assumption that the numbers of samples in different classes are balanced, and many SSL algorithms show lower performance for the datasets with the imbalanced class distribution. In this paper, we introduce a task of class-imbalanced semi-supervised learning (CISSL), which refers to semi-supervised learning with class-imbalanced data. In doing so, we consider class imbalance in both labeled and unlabeled sets. First, we analyze existing SSL methods in imbalanced environments and examine how the class imbalance affects SSL methods. Then we propose Suppressed Consistency Loss (SCL), a regularization method robust to class imbalance. Our method shows better performance than the conventional methods in the CISSL environment. In particular, the more severe the class imbalance and the smaller the size of the labeled data, the better our method performs.
Over 85 oversampling algorithms, mostly extensions of the SMOTE algorithm, have been built over the past two decades, to solve the problem of imbalanced datasets. However, it has been evident from previous studies that different oversampling algorithms have different degrees of efficiency with different classifiers. With numerous algorithms available, it is difficult to decide on an oversampling algorithm for a chosen classifier. Here, we overcome this problem with a multi-schematic and classifier-independent oversampling approach: ProWRAS(Proximity Weighted Random Affine Shadowsampling). ProWRAS integrates the Localized Random Affine Shadowsampling (LoRAS)algorithm and the Proximity Weighted Synthetic oversampling (ProWSyn) algorithm. By controlling the variance of the synthetic samples, as well as a proximity-weighted clustering system of the minority classdata, the ProWRAS algorithm improves performance, compared to algorithms that generate synthetic samples through modelling high dimensional convex spaces of the minority class. ProWRAS has four oversampling schemes, each of which has its unique way to model the variance of the generated data. Most importantly, the performance of ProWRAS with proper choice of oversampling schemes, is independent of the classifier used. We have benchmarked our newly developed ProWRAS algorithm against five sate-of-the-art oversampling models and four different classifiers on 20 publicly available datasets. ProWRAS outperforms other oversampling algorithms in a statistically significant way, in terms of both F1-score and Kappa-score. Moreover, we have introduced a novel measure for classifier independence I-score, and showed quantitatively that ProWRAS performs better, independent of the classifier used. In practice, ProWRAS customizes synthetic sample generation according to a classifier of choice and thereby reduces benchmarking efforts.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا