Do you want to publish a course? Click here

Exotic low-energy excitations emergent in the random Kitaev magnet Cu$_2$IrO$_3$

115   0   0.0 ( 0 )
 Added by Youngsu Choi
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on magnetization $M(H)$, dc/ac magnetic susceptibility $chi(T)$, specific heat $C_{mathrm{m}}(T)$ and muon spin relaxation ($mu$SR) measurements of the Kitaev honeycomb iridate Cu$_2$IrO$_2$ with quenched disorder. In spite of the chemical disorders, we find no indication of spin glass down to 260~mK from the $C_{mathrm{m}}(T)$ and $mu$SR data. Furthermore, a persistent spin dynamics observed by the zero-field muon spin relaxation evidences an absence of static magnetism. The remarkable observation is a scaling relation of $chi[H,T]$ and $M[H,T]$ in $H/T$ with the scaling exponent $alpha=0.26-0.28$, expected from bond randomness. However, $C_{mathrm{m}}[H,T]/T$ disobeys the predicted universal scaling law, pointing towards the presence of low-lying excitations in addition to random singlets. Our results signify an intriguing role of quenched disorder in a Kitaev spin system in creating low-energy excitations possibly pertaining to Z$_2$ fluxes.



rate research

Read More

$^7$Li nuclear magnetic resonance (NMR) and terahertz (THz) spectroscopies are used to probe magnetic excitations and their field dependence in the hyperhoneycomb Kitaev magnet $beta$-Li$_2$IrO$_3$. Spin-lattice relaxation rate ($1/T_1$) measured down to 100,mK indicates gapless nature of the excitations at low fields (below $H_csimeq 2.8$,T), in contrast to the gapped magnon excitations found in the honeycomb Kitaev magnet $alpha$-RuCl$_3$ at zero applied magnetic field. At higher temperatures in $beta$-Li$_2$IrO$_3$, $1/T_1$ passes through a broad maximum without any clear anomaly at the Neel temperature $T_Nsimeq 38$,K, suggesting the abundance of low-energy excitations that are indeed observed as two peaks in the THz spectra, both correspond to zone-center magnon excitations. At higher fields (above $H_c$), an excitation gap opens, and a re-distribution of the THz spectral weight is observed without any indication of an excitation continuum, in contrast to $alpha$-RuCl$_3$ where an excitation continuum was reported.
Recent scattering experiments in the 3D Kitaev magnet $beta$-Li$_2$IrO$_3$ have shown that a relatively weak magnetic field along the crystallographic ${bf b}$-axis drives the system from its incommensurate counter-rotating order to a correlated paramagnet, with a significant uniform `zigzag component superimposing the magnetization along the field. Here it is shown that the zigzag order is not emerging from its linear coupling to the field (via a staggered, off-diagonal element of the ${bf g}$-tensor), but from its intertwining with the incommensurate order and the longitudinal magnetization. The emerging picture explains all qualitative experimental findings at zero and finite fields, including the rapid decline of the incommensurate order with field and the so-called intensity sum rule. The latter are shown to be independent signatures of the smallness of the Heisenberg exchange $J$, compared to the Kitaev coupling $K$ and the off-diagonal anisotropy $Gamma$. Remarkably, in the regime of interest, the field $H^ast$ at which the incommensurate component vanishes, depends essentially only on $J$, which allows to extract an estimate of $J!simeq!4K$ from reported measurements of $H^ast$. We also comment on recent experiments in pressurized $beta$-Li$_2$IrO$_3$ and conclude that $J$ decreases with pressure.
The layered honeycomb iridate $alpha$-Li$_2$IrO$_3$ displays an incommensurate magnetic structure with counterrotating moments on nearest-neighbor sites, proposed to be stabilized by strongly-frustrated anisotropic Kitaev interactions between spin-orbit entangled Ir$^{4+}$ magnetic moments. Here we report powder inelastic neutron scattering measurements that observe sharply dispersive low-energy magnetic excitations centered at the magnetic ordering wavevector, attributed to Goldstone excitations of the incommensurate order, as well as an additional intense mode above a gap $Deltasimeq2.3$ meV. Zero-field muon-spin relaxation measurements show clear oscillations in the muon polarization below the N{e}el temperature $T_{rm N}simeq15$ K with a time-dependent profile consistent with bulk incommensurate long-range magnetism. Pulsed field magnetization measurements observe that only about half the saturation magnetization value is reached at the maximum field of 64 T. A clear anomaly near 25 T indicates a transition to a phase with reduced susceptibility. The transition field has a Zeeman energy comparable to the zero-field gapped mode, suggesting gap suppression as a possible mechanism for the field-induced transition.
The family of edge-sharing tri-coordinated iridates and ruthenates has emerged in recent years as a major platform for Kitaev spin liquid physics, where spins fractionalize into emergent magnetic fluxes and Majorana fermions with Dirac-like dispersions. While such exotic states are usually pre-empted by long-range magnetic order at low temperatures, signatures of Majorana fermions with long coherent times have been predicted to manifest at intermediate and higher energy scales, similar to the observation of spinons in quasi-1D spin chains. Here we present a Resonant Inelastic X-ray Scattering study of the magnetic excitations of the hyperhoneycomb iridate $beta$-Li$_2$IrO$_3$ under a magnetic field with a record-high-resolution spectrometer. At low-temperatures, dispersing spin waves can be resolved around the predicted intertwined incommensurate spiral and field-induced zigzag orders, whose excitation energy reaches a maximum of 16meV. A 2T magnetic field softens the dispersion around ${bf Q}=0$. The behavior of the spin waves under magnetic field is consistent with our semiclassical calculations for the ground state and the dynamical spin structure factor, which further predicts that the ensued intertwined uniform states remain robust up to very high fields (100 T). Most saliently, the low-energy magnon-like mode is superimposed by a broad continuum of excitations, centered around 35meV and extending up to 100meV. This high-energy continuum survives up to at least 300K -- well above the ordering temperature of 38K -- and gives evidence for pairs of long-lived Majorana fermions of the proximate Kitaev spin liquid.
232 - S. Bahr , A. Alfonsov , G. Jackeli 2013
We report a high-field electron spin resonance study in the sub-THz frequency domain of a single crystal of Sr$_2$IrO$_4$ that has been recently proposed as a prototypical spin-orbital Mott insulator. In the antiferromagnetically (AFM) ordered state with noncollinear spin structure that occurs in this material at $T_{rm N} approx 240$ K we observe both the low frequency mode due to the precession of weak ferromagnetic moments arising from a spin canting, and the high frequency modes due to the precession of the AFM sublattices. Surprisingly, the energy gap for the AFM excitations appears to be very small, amounting to 0.83 meV only. This suggests a rather isotropic Heisenberg dynamics of interacting Ir$^{4+}$ effective spins despite the spin-orbital entanglement in the ground state.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا