No Arabic abstract
Time- and angle-resolved photoelectron spectroscopy (trARPES) employing a 500 kHz extreme-ultravioled (XUV) light source operating at 21.7 eV probe photon energy is reported. Based on a high-power ytterbium laser, optical parametric chirped pulse amplification (OPCPA), and ultraviolet-driven high-harmonic generation, the light source produces an isolated high-harmonic with 110 meV bandwidth and a flux of more than $10^{11}$ photons/second on the sample. Combined with a state-of-the-art ARPES chamber, this table-top experiment allows high-repetition rate pump-probe experiments of electron dynamics in occupied and normally unoccupied (excited) states in the entire Brillouin zone and with a temporal system response function below 40 fs.
Time- and angle-resolved photoelectron spectroscopy (trARPES) is a powerful method to track the ultrafast dynamics of quasiparticles and electronic bands in energy and momentum space. We present a setup for trARPES with 22.3 eV extreme-ultraviolet (XUV) femtosecond pulses at 50-kHz repetition rate, which enables fast data acquisition and access to dynamics across momentum space with high sensitivity. The design and operation of the XUV beamline, pump-probe setup, and UHV endstation are described in detail. By characterizing the effect of space-charge broadening, we determine an ultimate source-limited energy resolution of 60 meV, with typically 80-100 meV obtained at 1-2e10 photons/s probe flux on the sample. The instrument capabilities are demonstrated via both equilibrium and time-resolved ARPES studies of transition-metal dichalcogenides. The 50-kHz repetition rate enables sensitive measurements of quasiparticles at low excitation fluences in semiconducting MoSe$_2$, with an instrumental time resolution of 65 fs. Moreover, photo-induced phase transitions can be driven with the available pump fluence, as shown by charge density wave melting in 1T-TiSe$_2$. The high repetition-rate setup thus provides a versatile platform for sensitive XUV trARPES, from quenching of electronic phases down to the perturbative limit.
Characterizing and controlling electronic properties of quantum materials require direct measurements of non-equilibrium electronic band structures over large regions of momentum space. Here, we demonstrate an experimental apparatus for time- and angle-resolved photoemission spectroscopy using high-order harmonic probe pulses generated by a robust, moderately high power (20 W) Yb:KGW amplifier with tunable repetition rate between 50 and 150 kHz. By driving high-order harmonic generation (HHG) with the second harmonic of the fundamental 1025 nm laser pulses, we show that single-harmonic probe pulses at 21.8 eV photon energy can be effectively isolated without the use of a monochromator. The on-target photon flux can reach 5 x 10^10 photons/second at 50 kHz, and the time resolution is measured to be 320 fs. The relatively long pulse duration of the Yb-driven HHG source allows us to reach an excellent energy resolution of 21.5 meV, which is achieved by suppressing the space-charge broadening using a low photon flux of 1.5 x 10^8 photons/second at a higher repetition rate of 150 kHz. The capabilities of the setup are demonstrated through measurements in the topological semimetal ZrSiS and the topological insulator Sb2-xGdxTe3.
Time-of-flight-based momentum microscopy has a growing presence in photoemission studies, as it enables parallel energy- and momentum-resolved acquisition of the full photoelectron distribution. Here, we report table-top extreme ultraviolet (XUV) time- and angle-resolved photoemission spectroscopy (trARPES) featuring both a hemispherical analyzer and a momentum microscope within the same setup. We present a systematic comparison of the two detection schemes and quantify experimentally relevant parameters, including pump- and probe-induced space-charge effects, detection efficiency, photoelectron count rates, and depth of focus. We highlight the advantages and limitations of both instruments based on exemplary trARPES measurements of bulk WSe2. Our analysis demonstrates the complementary nature of the two spectrometers for time-resolved ARPES experiments. Their combination in a single experimental apparatus allows us to address a broad range of scientific questions with trARPES.
High harmonic generation is a convenient way to obtain extreme ultraviolet light from table-top laser systems and the experimental tools to exploit this simple and powerful light source for time-resolved spectroscopy are being developed by several groups. For these applications, brightness and stability of the high harmonic generation is a key feature. This article focuses on practical aspects in the generation of extreme ultraviolet pulses with ultrafast commercial lasers, namely generation parameters and online monitoring as well as analysis of generation yield and stability.
We describe a tunable low-energy photon source consisting of a laser-driven xenon plasma lamp coupled to a Czerny-Turner monochromator. The combined tunability, brightness, and narrow spectral bandwidth make this light source useful in laboratory-based high-resolution photoemission spectroscopy experiments. The source supplies photons with energies up to ~7 eV, delivering under typical conditions >10^12 ph/s within a 10 meV spectral bandwidth, which is comparable to helium plasma lamps and many synchrotron beamlines. We first describe the lamp and monochromator system and then characterize its output, with attention to those parameters which are of interest for photoemission experiments. Finally, we present angle-resolved photoemission spectroscopy data using the light source and compare its performance to a conventional helium plasma lamp.