Do you want to publish a course? Click here

Theoretical evaluation of the screening-current-induced magnetic field in superconducting coils with tape wires

158   0   0.0 ( 0 )
 Added by Yasunori Mawatari
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We theoretically investigate the physical mechanism of the screening-current-induced field (SCIF) in solenoid coils wound with superconducting tape wires. We derive the direct relationship between the SCIF and the magnetization of tape wires, and a scaling law for the SCIF and the coil dimensions is demonstrated. A simple analytical expression of the SCIF is obtained as functions of current load factor, tape wire width, and the coil dimensions. We verify that the published data for the precise numerical computation of SCIF are roughly fitted by our theoretical results for flat coils where the height is smaller than the outer diameter.



rate research

Read More

The paper reports the first successful fabrication of MgB2 superconducting tape using a flexible metallic substrate as well as its strong pinning force, which was verified by direct measurement of transport critical current density. The tape was prepared by depositing MgB2 film on a Hastelloy tape buffered with an YSZ layer. The Jc of the tape exceeds 105A/cm2 at 4.2K and 10T, which is considered as a common benchmark for magnet application. The Jc dependence on magnetic field remains surprisingly very small up to 10T, suggesting that the tape has much better magnetic field characteristic than conventional Nb-Ti wires in liquid helium.
We investigate theoretically the dependence of magnetization loss of a helically wound superconducting tape on the round core radius $R$ and the helical conductor pitch in a ramped magnetic field. Using the thin-sheet approximation, we identify the two-dimensional equation that describes Faradays law of induction on a helical tape surface in the steady state. Based on the obtained basic equation, we simulate numerically the current streamlines and the power loss $P$ per unit tape length on a helical tape. For $R gtrsim w_0$ (where $w_0$ is the tape width), the simulated value of $P$ saturates close to the loss power $sim(2/pi)P_{rm flat}$ (where $P_{rm flat}$ is the loss power of a flat tape) for a loosely twisted tape. This is verified quantitatively by evaluating power loss analytically in the thin-filament limit of $w_0/Rrightarrow 0$. For $R lesssim w_0$, upon thinning the round core, the helically wound tape behaves more like a cylindrical superconductor as verified by the formula in the cylinder limit of $w_0/Rrightarrow 2pi$, and $P$ decreases further from the value for a loosely twisted tape, reaching $sim (2/pi)^2 P_{rm flat}$.
124 - V. V. Baranov , A. G. Balanov , 2011
The current-voltage characteristics of long and narrow superconducting channels are investigated using the time-dependent Ginzburg-Landau equations for complex order parameter. We found out that the steps in the current voltage characteristic can be associated with bifurcations of either steady or oscillatory solution. We revealed typical instabilities which induced the singularities in current-voltage characteristics, and analytically estimated period of oscillations and average voltage in the vicinity of the critical currents. Our results show that these bifurcations can substantially complicate dynamics of the order parameter and eventually lead to appearance of such phenomena as multistability and chaos. The discussed bifurcation phenomena sheds a light on some recent experimental findings.
We fabricated superconducting coplanar waveguide resonator with leads for dc bias, which enables the ac conductivity measurement under dc bias. The current and the magnetic field dependences of resonance properties were measured, and hysteretic behavior was observed as a function of the dc driving current. The observed shift in the inverse of the quality factor and the center frequency were understood by considering both the motion of vortices and the suppression of the order parameter with dc current. Our investigation revealed that the strongly pinned vortices have little infuluence on the change in the center frequency, while it still affects that of the quality factor. Our results indicate that an accurate understanding of the dynamics of driven vortices is indispensable when we attempt to control the resonance properties with high precision.
When a magnetic field is applied, the mixed state of a conventional Type II superconductor gets destroyed at the upper critical field Hc2, where the normal vortex cores overlap with each other. Here, we show that in the presence weak and homogeneous disorder the destruction of superconductivity with field follows a different route. Starting with a weakly disordered NbN thin film ( Tc ~ 9K ), we show that under the application of magnetic field the superconducting state becomes increasingly granular, where lines of vortices separate the superconducting islands. Consequently, phase fluctuations between these islands give rise to a field induced pseudogap phase, which has a gap in the electronic density of states but where the global zero resistance state is destroyed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا