Astrophysical $S_{E2}$ factor of the ${}^{12}mathrm{C}(alpha,gamma){}^{16}mathrm{O}$ reaction through the ${}^{12}mathrm{C}({}^{11}mathrm{B},{}^{7}mathrm{Li}){}^{16}mathrm{O}$ transfer reaction


Abstract in English

The ${}^{12}mathrm{C}(alpha,gamma){}^{16}mathrm{O}$ reaction plays a key role in the evolution of stars with masses of $M >$ 0.55 $M_odot$. The cross-section of the ${}^{12}mathrm{C}(alpha,gamma){}^{16}mathrm{O}$ reaction within the Gamow window ($E_textrm{c.m.}$ = 300 keV, $T_textrm9$ = 0.2) is extremely small (about $10^{-17}$ barn), which makes the direct measurement in a ground-based laboratory with existing techniques unfeasible. Up until now, the cross-sections at lower energies can only be extrapolated from the data at higher energies. However, two subthreshold resonances, located at $E_x$ = 7.117 MeV and $E_x$ = 6.917 MeV, make this extrapolation more complicated. In this work, the 6.917 MeV subthreshold resonance in the ${}^{12}mathrm{C}(alpha,gamma){}^{16}mathrm{O}$ reaction was investigated via the ${}^{12}mathrm{C}({}^{11}mathrm{B},{}^{7}mathrm{Li}){}^{16}mathrm{O}$ reaction. The experiment was performed using the Q3D magnetic spectrograph at the HI-13 tandem accelerator. We measured the angular distribution of the ${}^{12}mathrm{C}({}^{11}mathrm{B},{}^{7}mathrm{Li}){}^{16}mathrm{O}$ transfer reaction leading to the 6.917 MeV state. Based on the FRDWBA analysis, we derived the asymptotic normalization coefficient (ANC) of the 6.917 MeV level in $^{16}$O to be (1.10 $pm$ 0.29) $times 10^{10}$ fm$^{-1}$, with which the reduced $alpha$ width was computed to be $18.0pm4.7$ keV at the channel radius of 6.5 fm. Finally, we calculated the astrophysical $S_{E2}(300)$ factor of the ground-state transitions to be 46.2 $pm$ 7.7 keV b. The result for the astrophysical $S_{E2}(300)$ factor confirms the values obtained in various direct and indirect measurements and presents an independent examination of the most important data in nuclear astrophysics.

Download