A q-analogue and a symmetric function analogue of a result by Carlitz, Scoville and Vaughan


Abstract in English

We derive an equation that is analogous to a well-known symmetric function identity: $sum_{i=0}^n(-1)^ie_ih_{n-i}=0$. Here the elementary symmetric function $e_i$ is the Frobenius characteristic of the representation of $mathcal{S}_i$ on the top homology of the subset lattice $B_i$, whereas our identity involves the representation of $mathcal{S}_ntimes mathcal{S}_n$ on the Segre product of $B_n$ with itself. We then obtain a q-analogue of a polynomial identity given by Carlitz, Scoville and Vaughan through examining the Segre product of the subspace lattice $B_n(q)$ with itself. We recognize the connection between the Euler characteristic of the Segre product of $B_n(q)$ with itself and the representation on the Segre product of $B_n$ with itself by recovering our polynomial identity from specializing the identity on the representation of $mathcal{S}_itimes mathcal{S}_i$.

Download