Do you want to publish a course? Click here

Pion quasi parton distribution function on a fine lattice

75   0   0.0 ( 0 )
 Added by Charles Shugert
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We present a calculation of the bare quasi-PDF (qPDF) of the pion. We perform these calculations using the HotQCD HISQ gauge ensemble for our sea quarks along with a Wilson-Clover valence quark action. Our lattice size is $48^3times64$, our lattice spacing is set at a = 0.06 fm, and our pion mass is tuned to 300 MeV. Utilizing momentum smearing techniques, we compute the bare qPDF boosted up to momentum 1.72 GeV. In addition we explore excited state contamination of the three-point correlator.



rate research

Read More

We present a lattice QCD study of valence parton distribution inside the pion within the framework of Large Momentum Effective Theory. We use a mixed action approach with 1-HYP smeared valence Wilson clover quarks on 2+1 flavor HISQ sea with the valence quark mass tuned to 300 MeV pion mass. We use $48^3 times 64$ lattice at a fine lattice spacing $a=0.06$ fm for this computation. We renormalize the quasi-PDF matrix element in the non-perturbative RI-MOM scheme. As a byproduct, we test the validity of 1-loop matching procedure by comparing the RI-MOM renormalized quasi-PDF matrix element with off-shell quark external states as computed in the continuum 1-loop perturbation theory with the lattice results at $a=0.04$ and 0.06 fm. By applying the RI-MOM to ${bar{rm MS}}$ one-loop matching, implemented through a fit to phenomenologically motivated PDFs, we obtain the valence PDF of pion.
We present preliminary numerical results on the connected piece of the quasi-PDF of pion as determined using Wilson-Clover valence fermions on HISQ ensembles. We discuss its non-perturbative renormalization in RI/MOM scheme with and without removal of the divergent self-energy part, and compare its running with expectation from perturbation theory. We also discuss the matching of pion QPDF to PDF, and various systematic effects associated with it.
We report on recent results for the pion matrix element of the twist-2 operator corresponding to the average momentum of non-singlet quark densities. For the first time finite volume effects of this matrix element are investigated and come out to be surprisingly large. We use standard Wilson and non-perturbatively improved clover actions in order to control better the extrapolation to the continuum limit. Moreover, we compute, fully non-perturbatively, the renormalization group invariant matrix element, which allows a comparison with experimental results in a broad range of energy scales. Finally, we discuss the remaining uncertainties, the extrapolation to the chiral limit and the quenched approximation.
120 - Zhouyou Fan , Huey-Wen Lin 2021
We present the first determination of the $x$-dependent pion gluon distribution from lattice QCD using the pseudo-PDF approach. We use lattice ensembles with 2+1+1 flavors of highly improved staggered quarks (HISQ), generated by MILC Collaboration, at two lattice spacings $aapprox 0.12$ and 0.15~fm and three pion masses $M_piapprox 220$, 310 and 690 MeV. We use clover fermions for the valence action and momentum smearing to achieve pion boost momentum up to 2.29 GeV. We find that the dependence of the pion gluon parton distribution on lattice spacing and pion mass is mild. We compare our results from the lightest pion mass ensemble with the determination by JAM and xFitter global fits.
We present a high-statistics lattice QCD determination of the valence parton distribution function (PDF) of the pion, with a mass of 300 MeV, using two very fine lattice spacings of $a=0.06$ fm and 0.04 fm. We reconstruct the $x$-dependent PDF, as well as infer the first few even moments of the PDF using leading-twist 1-loop perturbative matching framework. Our analyses use both RI-MOM and ratio-based schemes to renormalize the equal-time bi-local quark-bilinear matrix elements of pions boosted up to 2.4 GeV momenta. We use various model-independent and model-dependent analyses to infer the large-$x$ behavior of the valence PDF. We also present technical studies on lattice spacing and higher-twist corrections present in the boosted pion matrix elements.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا