Do you want to publish a course? Click here

Unsupervised domain adaptation for medical imaging segmentation with self-ensembling

91   0   0.0 ( 0 )
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Recent advances in deep learning methods have come to define the state-of-the-art for many medical imaging applications, surpassing even human judgment in several tasks. Those models, however, when trained to reduce the empirical risk on a single domain, fail to generalize when applied to other domains, a very common scenario in medical imaging due to the variability of images and anatomical structures, even across the same imaging modality. In this work, we extend the method of unsupervised domain adaptation using self-ensembling for the semantic segmentation task and explore multiple facets of the method on a small and realistic publicly-available magnetic resonance (MRI) dataset. Through an extensive evaluation, we show that self-ensembling can indeed improve the generalization of the models even when using a small amount of unlabelled data.



rate research

Read More

Data collection and annotation are time-consuming in machine learning, expecially for large scale problem. A common approach for this problem is to transfer knowledge from a related labeled domain to a target one. There are two popular ways to achieve this goal: adversarial learning and self training. In this article, we first analyze the training unstablity problem and the mistaken confusion issue in adversarial learning process. Then, inspired by domain confusion and self-ensembling methods, we propose a combined model to learn feature and class jointly invariant representation, namely Domain Confusion with Self Ensembling (DCSE). The experiments verified that our proposed approach can offer better performance than empirical art in a variety of unsupervised domain adaptation benchmarks.
102 - Han Sun , Lei Lin , Ningzhong Liu 2021
Recently, in order to address the unsupervised domain adaptation (UDA) problem, extensive studies have been proposed to achieve transferrable models. Among them, the most prevalent method is adversarial domain adaptation, which can shorten the distance between the source domain and the target domain. Although adversarial learning is very effective, it still leads to the instability of the network and the drawbacks of confusing category information. In this paper, we propose a Robust Ensembling Network (REN) for UDA, which applies a robust time ensembling teacher network to learn global information for domain transfer. Specifically, REN mainly includes a teacher network and a student network, which performs standard domain adaptation training and updates weights of the teacher network. In addition, we also propose a dual-network conditional adversarial loss to improve the ability of the discriminator. Finally, for the purpose of improving the basic ability of the student network, we utilize the consistency constraint to balance the error between the student network and the teacher network. Extensive experimental results on several UDA datasets have demonstrated the effectiveness of our model by comparing with other state-of-the-art UDA algorithms.
Convolutional neural network-based approaches have achieved remarkable progress in semantic segmentation. However, these approaches heavily rely on annotated data which are labor intensive. To cope with this limitation, automatically annotated data generated from graphic engines are used to train segmentation models. However, the models trained from synthetic data are difficult to transfer to real images. To tackle this issue, previous works have considered directly adapting models from the source data to the unlabeled target data (to reduce the inter-domain gap). Nonetheless, these techniques do not consider the large distribution gap among the target data itself (intra-domain gap). In this work, we propose a two-step self-supervised domain adaptation approach to minimize the inter-domain and intra-domain gap together. First, we conduct the inter-domain adaptation of the model; from this adaptation, we separate the target domain into an easy and hard split using an entropy-based ranking function. Finally, to decrease the intra-domain gap, we propose to employ a self-supervised adaptation technique from the easy to the hard split. Experimental results on numerous benchmark datasets highlight the effectiveness of our method against existing state-of-the-art approaches. The source code is available at https://github.com/feipan664/IntraDA.git.
Deep learning has demonstrated significant improvements in medical image segmentation using a sufficiently large amount of training data with manual labels. Acquiring well-representative labels requires expert knowledge and exhaustive labors. In this paper, we aim to boost the performance of semi-supervised learning for medical image segmentation with limited labels using a self-ensembling contrastive learning technique. To this end, we propose to train an encoder-decoder network at image-level with small amounts of labeled images, and more importantly, we learn latent representations directly at feature-level by imposing contrastive loss on unlabeled images. This method strengthens intra-class compactness and inter-class separability, so as to get a better pixel classifier. Moreover, we devise a student encoder for online learning and an exponential moving average version of it, called teacher encoder, to improve the performance iteratively in a self-ensembling manner. To construct contrastive samples with unlabeled images, two sampling strategies that exploit structure similarity across medical images and utilize pseudo-labels for construction, termed region-aware and anatomical-aware contrastive sampling, are investigated. We conduct extensive experiments on an MRI and a CT segmentation dataset and demonstrate that in a limited label setting, the proposed method achieves state-of-the-art performance. Moreover, the anatomical-aware strategy that prepares contrastive samples on-the-fly using pseudo-labels realizes better contrastive regularization on feature representations.
Recent advances in unsupervised domain adaptation (UDA) show that transferable prototypical learning presents a powerful means for class conditional alignment, which encourages the closeness of cross-domain class centroids. However, the cross-domain inner-class compactness and the underlying fine-grained subtype structure remained largely underexplored. In this work, we propose to adaptively carry out the fine-grained subtype-aware alignment by explicitly enforcing the class-wise separation and subtype-wise compactness with intermediate pseudo labels. Our key insight is that the unlabeled subtypes of a class can be divergent to one another with different conditional and label shifts, while inheriting the local proximity within a subtype. The cases of with or without the prior information on subtype numbers are investigated to discover the underlying subtype structure in an online fashion. The proposed subtype-aware dynamic UDA achieves promising results on medical diagnosis tasks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا