Visualizing Encapsulated Graphene, its Defects and its Charge Environment by Sub-Micrometer Resolution Electrical Imaging


Abstract in English

Devices made from two-dimensional (2D) materials such as graphene or transition metal dichalcogenides possess interesting electronic properties that can become accessible to experimental probes when the samples are protected from deleterious environmental effects by encapsulating them between hexagonal boron nitride (hBN) layers. While the encapsulated flakes can be detected through post-processing of optical images or confocal Raman mapping, these techniques lack the sub-micrometer scale resolution to identify tears, structural defects or impurities, which is crucial for the fabrication of high-quality devices. Here we demonstrate a simple method to visualize such buried flakes with sub-micrometer resolution, by combining Kelvin force probe microscopy (KPFM) with electrostatic force microscopy (EFM). KPFM, which measures surface potential fluctuations, is extremely effective in spotting charged contaminants within and on top of the heterostructure, making it possible to distinguish contaminated regions in the buried flake. When applying a tip bias larger than the surface potential fluctuations, EFM becomes extremely efficient in highlighting encapsulated flakes and their sub-micron structural defects. We show that these imaging modes, which are standard extensions of atomic force microscopy (AFM), are perfectly suited for locating encapsulated conductors, for visualizing nanometer scale defects and bubbles, and for characterizing their local charge environment.

Download