Optical soliton dynamics can cause the extreme alteration of the temporal and spectral shape of a propagating light pulse. They occur at up to kilowatt peak powers in glass-core optical fibres and the gigawatt level in gas-filled microstructured hollow-core fibres. Here we demonstrate optical soliton dynamics in large-core hollow capillary fibres. This enables scaling of soliton effects by several orders of magnitude to the multi-mJ energy and terawatt peak power level. We experimentally demonstrate two key soliton effects. First, we observe self-compression to sub-cycle pulses and infer the creation of sub-femtosecond field waveforms - a route to high-power optical attosecond pulse generation. Second, we efficiently generate continuously tunable high-energy (1 to 16 $mu$J) pulses in the vacuum and deep ultraviolet (110 nm to 400 nm) through resonant dispersive-wave emission.These results promise to be the foundation of a new generation of table-top light sources for ultrafast strong-field physics and advanced spectroscopy.