Do you want to publish a course? Click here

Equilibrium Formulae for Transverse Magneto-transport of Strongly Correlated Metals

76   0   0.0 ( 0 )
 Added by Assa Auerbach
 Publication date 2018
  fields Physics
and research's language is English
 Authors Assa Auerbach




Ask ChatGPT about the research

Exact formulas for the Hall coefficient, modified Nernst coefficient, and thermal Hall coefficient of metals are derived from the Kubo formula. These coefficients depend exclusively on equilibrium (time independent) susceptibilities, which are significantly easier to compute than conductivities. For weak isotropic scattering, Boltzmann theory is recovered. For strong scattering, well controlled methods for thermodynamic functions are available. As an example, the Hall sign reversals of lattice bosons near the Mott insulator phases are determined. Appendices include mathematical supplements and instructions for calculating the coefficients.



rate research

Read More

73 - Assa Auerbach 2018
An exact formula for the temperature dependent Hall number of metals is derived. It is valid for non-relativistic fermions or bosons, with arbitrary potential and interaction. This DC transport coefficient is proven to (remarkably) depend solely on equilibrium susceptibilities, which are more amenable to numerical algorithms than the conductivity. An application to strongly correlated phases is demonstrated by calculating the Hall sign in the vicinity of Mott phases of lattice bosons.
A current challenge in condensed matter physics is the realization of strongly correlated, viscous electron fluids. These fluids are not amenable to the perturbative methods of Fermi liquid theory, but can be described by holography, that is, by mapping them onto a weakly curved gravitational theory via gauge/gravity duality. The canonical system considered for realizations has been graphene, which possesses Dirac dispersions at low energies as well as significant Coulomb interactions between the electrons. In this work, we show that Kagome systems with electron fillings adjusted to the Dirac nodes of their band structure provide a much more compelling platform for realizations of viscous electron fluids, including non-linear effects such as turbulence. In particular, we find that in stoichiometric Scandium (Sc) Herbertsmithite, the fine-structure constant, which measures the effective Coulomb interaction and hence reflects the strength of the correlations, is enhanced by a factor of about 3.2 as compared to graphene, due to orbital hybridization. We employ holography to estimate the ratio of the shear viscosity over the entropy density in Sc-Herbertsmithite, and find it about three times smaller than in graphene. These findings put, for the first time, the turbulent flow regime described by holography within the reach of experiments.
Fermi liquid theory has been a foundation in understanding the electronic properties of materials. For weakly interacting two-dimensional (2D) electron or hole systems, electron-electron interactions are known to introduce quantum corrections to the Drude conductivity in the FL theory, giving rise to temperature dependent conductivity and magneto-resistance. Here we study the magneto-transport in a strongly interacting 2D hole system over a broad range of temperatures ($T$ = 0.09 to $>$1K) and densities $p=1.98-0.99times10^{10}$ cm$^{-2}$ where the ratio between Coulomb energy and Fermi energy $r_s$ = 20 - 30. We show that while the system exhibits a negative parabolic magneto-resistance at low temperatures ($lesssim$ 0.4K) characteristic of an interacting FL, the FL interaction corrections represent an insignificant fraction of the total conductivity. Surprisingly, a positive magneto-resistance emerges at high temperatures and grows with increasing temperature even in the regime $T sim E_F$, close to the Fermi temperature. This unusual positive magneto-resistance at high temperatures is attributed to the collective viscous transport of 2D hole fluid in the hydrodynamic regime where holes scatter frequently with each other. These findings highlight the collective transport in a strongly interacting 2D system in the $r_sgg 1$ regime and the hydrodynamic transport induced magneto-resistance opens up possibilities to new routes of magneto-resistance at high temperatures.
There is considerable recent interest in the phenomenon of anisotropic electroresistivity of correlated metals. While some interesting work has been done on the iron-based superconducting systems, not much is known for the cuprate materials. Here we study the anisotropy of elastoresistivity for cuprates in the normal state. We present theoretical results for the effect of strain on resistivity, and additionally on the optical weight and local density of states. We use the recently developed extremely strongly correlated Fermi liquid theory in two dimensions, which accounts quantitatively for the unstrained resistivities for three families of single-layer cuprates. The strained hoppings of a tight-binding model are roughly modeled analogously to strained transition metals. The strained resistivity for a two-dimensional $t$-$t$-$J$ model are then obtained, using the equations developed in recent work. Our quantitative predictions for these quantities have the prospect of experimental tests in the near future, for strongly correlated materials such as the hole-doped and electron-doped high-$T_c$ materials.
We formulate a low-energy theory for the magnetic interactions between electrons in the multi-band Hubbard model under non-equilibrium conditions determined by an external time-dependent electric field which simulates laser-induced spin dynamics. We derive expressions for dynamical exchange parameters in terms of non-equilibrium electronic Green functions and self-energies, which can be computed, e.g., with the methods of time-dependent dynamical mean-field theory. Moreover, we find that a correct description of the system requires, in addition to exchange, a new kind of magnetic interaction, that we name twist exchange, which formally resembles Dzyaloshinskii-Moriya coupling, but is not due to spin-orbit, and is actually due to an effective three-spin interaction. Our theory allows the evaluation of the related time-dependent parameters as well.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا