A Game Theoretic Approach for Dynamic Information Flow Tracking to Detect Multi-Stage Advanced Persistent Threats


Abstract in English

Advanced Persistent Threats (APTs) infiltrate cyber systems and compromise specifically targeted data and/or resources through a sequence of stealthy attacks consisting of multiple stages. Dynamic information flow tracking has been proposed to detect APTs. In this paper, we develop a dynamic information flow tracking game for resource-efficient detection of APTs via multi-stage dynamic games. The game evolves on an information flow graph, whose nodes are processes and objects (e.g. file, network endpoints) in the system and the edges capture the interaction between different processes and objects. Each stage of the game has pre-specified targets which are characterized by a set of nodes of the graph and the goal of the APT is to evade detection and reach a target node of that stage. The goal of the defender is to maximize the detection probability while minimizing performance overhead on the system. The resource costs of the players are different and the information structure is asymmetric resulting in a nonzero-sum imperfect information game. We first calculate the best responses of the players and characterize the set of Nash equilibria for single stage attacks. Subsequently, we provide a polynomial-time algorithm to compute a correlated equilibrium for the multi-stage attack case. Finally, we experiment our model and algorithms on real-world nation state attack data obtained from Refinable Attack Investigation system.

Download