We consider properties of the inhomogeneous solution found recently for mbox{$mathbb{CP}^{,N-1}$} model. The solution was interpreted as a soliton. We reevaluate its energy in three different ways and find that it is negative contrary to the previous claims. Hence, instead of the solitonic interpretation it calls for reconsideration of the issue of the true ground state. While complete resolution is still absent we show that the energy density of the periodic elliptic solution is lower than the energy density of the homogeneous ground state. We also discuss similar solutions for the ${mathbb{O}}(N)$ model and for SUSY extensions.