Dynamic Control of Pneumatic Muscle Actuators


Abstract in English

Pneumatic muscle actuators (PMA) are easy-to-fabricate, lightweight, compliant, and have high power-to-weight ratio, thus making them the ideal actuation choice for many soft and continuum robots. But so far, limited work has been carried out in dynamic control of PMAs. One reason is that PMAs are highly hysteretic. Coupled with their high compliance and response lag, PMAs are challenging to control, particularly when subjected to external loads. The hysteresis models proposed to-date rely on many physical and mechanical parameters that are difficult to measure reliably and therefore of limited use for implementing dynamic control. In this work, we employ a Bouc-Wen hysteresis modeling approach to account for the hysteresis of PMAs and use the model for implementing dynamic control. The controller is then compared to PID feedback control for a number of dynamic position tracking tests. The dynamic control based on the Bouc-Wen hysteresis model shows significantly better tracking performance. This work lays the foundation towards implementing dynamic control for PMA-powered high degrees of freedom soft and continuum robots.

Download