Evidence for charge transfer and proximate magnetism in graphene/a-RuCl_3 heterostructures


Abstract in English

We report a study of electronic transport in van der Waals heterostructures composed of flakes of the antiferromagnetic Mott insulator a-RuCl_3 placed on top of monolayer graphene Hall bars. While the zero-field transport shows a strong resemblance to that of isolated graphene, we find a consistently $p$-type Hall effect suggestive of multiband conduction, along with a non-monotonic and gate-voltage-dependent excursion of the resistivity at low temperatures that is reminiscent of transport in the presence of a magnetic phase transition. We interpret these data as evidence for charge transfer from graphene to a-RuCl_3 in an inhomogeneous device yielding both highly- and lightly-doped regions of graphene, while the latter shows a particular sensitivity to magnetism in the a-RuCl_3. Thus proximity to graphene is a means to access magnetic properties of thin layers of magnetic insulators.

Download