Do you want to publish a course? Click here

On 1/N diagrammatics in the SYK model beyond the conformal limit

101   0   0.0 ( 0 )
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

In the present work we discuss aspects of the 1/N expansion in the SYK model, formulated in terms of the semiclassical expansion of the bilocal field path integral. We derive cutting rules, which are applicable for all planar vertices in the bilocal field diagrams. We show that these cutting rules lead to novel identities on higher-point correlators, which could be used to constrain their form beyond the solvable conformal limit. We also demonstrate how the cutting rules can simplify the computation of amplitudes on an example of the six-point function.



rate research

Read More

The Sachdev-Ye-Kitaev (SYK) model is a model of $q$ interacting fermions. Gross and Rosenhaus have proposed a generalization of the SYK model which involves fermions with different flavors. In terms of Feynman graphs, those flavors are reminiscent of the colors used in random tensor theory. This gives us the opportunity to apply some modern, yet elementary, tools developed in the context of random tensors to one particular instance of such colored SYK models. We illustrate our method by identifying all diagrams which contribute to the leading and next-to-leading orders of the 2-point and 4-point functions in the large $N$ expansion, and argue that our method can be further applied if necessary. In a second part we focus on the recently introduced Gurau-Witten tensor model and also extract the leading and next-to-leading orders of the 2-point and 4-point functions. This analysis turns out to be remarkably more involved than in the colored SYK model.
We study various properties of the soft modes in the $mathcal{N}=2$ supersymmetric SYK model.
75 - V. Bonzom , V. Nador , A. Tanasa 2019
Various tensor models have been recently shown to have the same properties as the celebrated Sachdev-Ye-Kitaev (SYK) model. In this paper we study in detail the diagrammatics of two such SYK-like tensor models: the multi-orientable (MO) model which has an $U(N) times O(N) times U(N)$ symmetry and a quartic $O(N)^3$-invariant model whose interaction has the tetrahedral pattern. We show that the Feynman graphs of the MO model can be seen as the Feynman graphs of the $O(N)^3$-invariant model which have an orientable jacket. We then present a diagrammatic toolbox to analyze the $O(N)^3$-invariant graphs. This toolbox allows for a simple strategy to identify all the graphs of a given order in the $1/N$ expansion. We apply it to the next-to-next-to-leading and next-to-next-to-next-to-leading orders which are the graphs of degree $1$ and $3/2$ respectively.
We consider the question of identifying the bulk space-time of the SYK model. Focusing on the signature of emergent space-time of the (Euclidean) model, we explain the need for non-local (Radon-type) transformations on external legs of $n$-point Greens functions. This results in a dual theory with Euclidean AdS signature with additional leg-factors. We speculate that these factors incorporate the coupling of additional bulk states similar to the discrete states of 2d string theory.
We study a two-site Sachdev-Ye-Kitaev (SYK) model with complex couplings, and identify a low temperature transition to a gapped phase characterized by a constant in temperature free energy. This transition is observed without introducing a coupling between the two sites, and only appears after ensemble average over the complex couplings. We propose a gravity interpretation of these results by constructing an explicit solution of Jackiw-Teitelboim (JT) gravity with matter: a two-dimensional Euclidean wormhole whose geometry is the double trumpet. This solution is sustained by imaginary sources for a marginal operator, without the need of a coupling between the two boundaries. As the temperature is decreased, there is a transition from a disconnected phase with two black holes to the connected wormhole phase, in qualitative agreement with the SYK observation. The expectation value of the marginal operator is an order parameter for this transition. This illustrates in a concrete setup how a Euclidean wormhole can arise from an average over field theory couplings.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا