No Arabic abstract
Half-metals have fully spin polarized charge carriers at the Fermi surface. Such polarization usually occurs due to strong electron--electron correlations. Recently [Phys. Rev. Lett. {bf{119}}, 107601 (2017)], we have demonstrated theoretically that adding (or removing) electrons to systems with Fermi surface nesting also stabilizes the half-metallic states even in the weak-coupling regime. In the absence of doping, the ground state of the system is a spin or charge density wave, formed by four nested bands. Each of these bands is characterized by charge (electron/hole) and spin (up/down) labels. Only two of these bands accumulate charge carriers introduced by doping, forming a half-metallic two-valley Fermi surface. Analysis demonstrates that two types of such half-metallicity can be stabilized. The first type corresponds to the full spin polarization of the electrons and holes at the Fermi surface. The second type, with antiparallel spins in electron-like and hole-like valleys, is referred to as a spin-valley half-metal and corresponds to the complete polarization with respect to the spin-valley operator. We analyze spin and spin-valley currents and possible superconductivity in these systems. We show that spin or spin-valley currents can flow in both half-metallic phases.
By means of high-resolution angle resolved photoelectron spectroscopy (ARPES) we have studied the fermiology of 2H transition metal dichalcogenide polytypes TaSe2, NbSe2, and Cu0.2NbS2. The tight-binding model of the electronic structure, extracted from ARPES spectra for all three compounds, was used to calculate the Lindhard function (bare spin susceptibility), which reflects the propensity to charge density wave (CDW) instabilities observed in TaSe2 and NbSe2. We show that though the Fermi surfaces of all three compounds possess an incommensurate nesting vector in the close vicinity of the CDW wave vector, the nesting and ordering wave vectors do not exactly coincide, and there is no direct relationship between the magnitude of the susceptibility at the nesting vector and the CDW transition temperature. The nesting vector persists across the incommensurate CDW transition in TaSe2 as a function of temperature despite the observable variations of the Fermi surface geometry in this temperature range. In Cu0.2NbS2 the nesting vector is present despite different doping level, which lets us expect a possible enhancement of the CDW instability with Cu-intercalation in the CuxNbS2 family of materials.
A few years ago we predicted theoretically that in systems with nesting of the Fermi surface the spin-valley half-metal has lower energy than the spin density wave state. In this paper we suggest a possible way to distinguish these phases experimentally. We calculate dynamical spin susceptibility tensor for both states in the framework of the Kubo formalism. Discussed phases have different numbers of the bands: four bands in the spin-valley half-metal and only two bands in the spin density wave. Therefore, their susceptibilities, as functions of frequency, have different number of peaks. Besides, the spin-valley half-metal does not have rotational symmetry, thus, in general the off-diagonal components of susceptibility tensor are non-zero. The spin density wave obeys robust rotational symmetry and off-diagonal components of the susceptibility tensor are zero. These characteristic features can be observed in experiments with inelastic neutron scattering.
Half-metallicity (full spin polarization of the Fermi surface) usually occurs in strongly correlated electron systems. We demonstrate that doping a spin-density wave insulator in the weak-coupling regime may also stabilize half-metallic states. The undoped spin-density wave is formed by four nested bands [i.e., each band is characterized by charge (electron/hole) and spin (up/down) labels]. Of these four bands only two accumulate the doped carriers, forming a half-metallic two-valley Fermi surface. Depending on parameters, the spin polarizations of the electron-like and hole-like valleys may be (i) parallel or (ii) antiparallel. The Fermi surface of (i) is fully spin-polarized (similar to usual half-metals). Case (ii), referred to as a spin-valley half-metal, corresponds to complete polarization with respect to the spin-valley operator. The properties of these states are discussed.
We analyze the effects of an applied magnetic field on the phase diagram of a weakly-correlated electron system with imperfect nesting. The Hamiltonian under study describes two bands: electron and hole ones. Both bands have spherical Fermi surfaces, whose radii are slightly mismatched due to doping. These types of models are often used in the analysis of magnetic states in chromium and its alloys, superconducting iron pnictides, AA-type bilayer graphene, borides, etc. At zero magnetic field, the uniform ground state of the system turns out to be unstable against electronic phase separation. The applied magnetic field affects the phase diagram in several ways. In particular, the Zeeman term stabilizes new antiferromagnetic phases. It also significantly shifts the boundaries of inhomogeneous (phase-separated) states. At sufficiently high fields, the Landau quantization gives rise to oscillations of the order parameters and of the Neel temperature as a function of the magnetic field.
Sr$_2$RuO$_4$, an unconventional superconductor, is known to possess an incommensurate spin density wave instability driven by Fermi surface nesting. Here we report a static spin density wave ordering with a commensurate propagation vector $q_c$ = (0.25 0.25 0) in Fe-doped Sr$_2$RuO$_4$, despite the magnetic fluctuations persisting at the incommensurate wave vectors $q_{ic}$ = (0.3 0.3 L) as in the parent compound. The latter feature is corroborated by the first principles calculations, which show that Fe substitution barely changes the nesting vector of the Fermi surface. These results suggest that in addition to the known incommensurate magnetic instability, Sr$_2$RuO$_4$ is also in proximity to a commensurate magnetic tendency that can be stabilized via Fe doping.