We show that the algebraic fundamental group of a smooth projective curve over a finite field admits a finite topological presentation where the number of relations does not exceed the number of generators.
In this paper, we investigate algebraic and topological properties of the Riordan groups over finite fields. These groups provide a new class of topologically finitely generated profinite groups with finite width. We also introduce, characterize index-subgroups of our Riordan groups, and finally we show exactly the range of Hausdorff dimensions of these groups. The latter results are analogous to the work of Barnea and Klopsch for the Nottingham groups.
Asymptotic properties of finitely generated subgroups of free groups, and of finite group presentations, can be considered in several fashions, depending on the way these objects are represented and on the distribution assumed on these representations: here we assume that they are represented by tuples of reduced words (generators of a subgroup) or of cyclically reduced words (relators). Classical models consider fixed size tuples of words (e.g. the few-generator model) or exponential size tuples (e.g. Gromovs density model), and they usually consider that equal length words are equally likely. We generalize both the few-generator and the density models with probabilistic schemes that also allow variability in the size of tuples and non-uniform distributions on words of a given length.Our first results rely on a relatively mild prefix-heaviness hypothesis on the distributions, which states essentially that the probability of a word decreases exponentially fast as its length grows. Under this hypothesis, we generalize several classical results: exponentially generically a randomly chosen tuple is a basis of the subgroup it generates, this subgroup is malnormal and the tuple satisfies a small cancellation property, even for exponential size tuples. In the special case of the uniform distribution on words of a given length, we give a phase transition theorem for the central tree property, a combinatorial property closely linked to the fact that a tuple freely generates a subgroup. We then further refine our results when the distribution is specified by a Markovian scheme, and in particular we give a phase transition theorem which generalizes the classical results on the densities up to which a tuple of cyclically reduced words chosen uniformly at random exponentially generically satisfies a small cancellation property, and beyond which it presents a trivial group.
For each family of finite classical groups, and their associated simple quotients, we provide an explicit presentation on a specific generating set of size at most 8. Since there exist efficient algorithms to construct this generating set in any copy of the group, our presentations can be used to verify claimed isomorphisms between representations of the classical group. The presentations are available in Magma.
Lie groups over local fields furnish prime examples of totally disconnected, locally compact groups. We discuss the scale, tidy subgroups and further subgroups (like contraction subgroups) for analytic endomorphisms of such groups. The text is both a research article and a worked out set of lecture notes for a mini-course held June 27-July 1, 2016 at the MATRIX research center in Creswick (Australia) as part of the Winter of Disconnectedness. The text can be read in parallel to the earlier lecture notes arXiv:0804.2234 which are devoted to automorphisms, with sketches of proof. Complementary aspects are emphasized.
We study a random group G in the Gromov density model and its Cayley complex X. For density < 5/24 we define walls in X that give rise to a nontrivial action of G on a CAT(0) cube complex. This extends a result of Ollivier and Wise, whose walls could be used only for density < 1/5. The strategy employed might be potentially extended in future to all densities < 1/4.