Do you want to publish a course? Click here

Breakdown of the naive parton model in super-weak scale collisions

79   0   0.0 ( 0 )
 Added by Ozan Erdo\\u{g}an
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

In this letter we show that for observables which involve the measurement of weak charge in final states in hadronic collisions, the standard parton model picture breaks down at scales well above the weak scale due to nonfactorizable electroweak corrections at leading order in the power expansion. This implies that the resummation of these factorization-violating logarithms, which start at order $alpha_s^2, alpha_W^2 log^4(Q^2/M_W^2)$, cannot be accomplished solely by following standard DGLAP evolution equations; other techniques will be needed to systematically sum large logarithms.



rate research

Read More

We explore the prospects for bounding the weak scale using the weak gravity conjecture (WGC), addressing the hierarchy problem by violating the expectations of effective field theory. Building on earlier work by Cheung and Remmen, we construct models in which a super-extremal particle satisfying the electric WGC for a new Abelian gauge group obtains some of its mass from the Higgs, setting an upper bound on the weak scale as other UV-insensitive parameters are held fixed. Avoiding undue sensitivity of the weak scale to the parameters entering the bound implies that the super-extremal particle must lie at or below the weak scale. While the magnetic version of the conjecture implies additional physics entering around the same scale, we demonstrate that this need not correspond to a cutoff for the Higgs potential or otherwise trivialize the bound. We stress that linking the WGC to the weak scale necessarily involves new light particles coupled to the Higgs, implying a variety of experimentally accessible signatures including invisible Higgs decays and radiative corrections in the electroweak sector. These models also give rise to natural dark matter candidates, providing additional paths to discovery. In particular, collective effects in the dark matter plasma may provide a telltale sign of the Abelian gauge group responsible for bounding the weak scale.
We present a new solution to the hierarchy problem, where the Higgs mass is at its observed electroweak value because such a patch inflates the most in the early universe. If the Higgs mass depends on a field undergoing quantum fluctuations during inflation, then inflation will fill the universe with the Higgs mass that corresponds to the largest vacuum energy. The hierarchy problem is solved if the maximum vacuum energy occurs for the observed Higgs mass. We demonstrate this notion with a proof-of-principle model containing an axion, a modulus field and the Higgs, and show that inflation can be responsible for the weak scale.
In this paper we estimate the double parton scattering (DPS) contribution for the heavy quark production in $pA$ collisions at the LHC. The cross sections for the charm and bottom production are estimated using the dipole approach and taking into account the saturation effects, which are important for high energies and for the scattering with a large nucleus. We compare the DPS contribution with the single parton scattering one and demonstrate that in the case of charm production both are similar in the kinematical range probed by the LHC. Predictions for the rapidity range analysed by the LHCb Collaboration are also presented. Our results indicate that the study of the DPS contribution for the heavy quark production in $pPb$ collisions at the LHC is feasible and can be useful to probe the main assumptions of the approach.
285 - Jean Iliopoulos 2013
These are the notes of a set of four lectures which I gave at the 2012 CERN Summer School of Particle Physics. They cover the basic ideas of gauge symmetries and the phenomenon of spontaneous symmetry breaking which are used in the construction of the Standard Model of the Electro-Weak Interactions.
We demonstrate that perturbative QCD leads to positive 3D parton--parton correlations inside nucleon explaining a factor two enhancement of the cross section of multi-parton interactions observed at Tevatron at $x_ige 0.01$ as compared to the predictions of the independent parton approximation. We also find that though perturbative correlations decrease with $x$ decreasing, the nonperturbative mechanism kicks in and should generate correlation which, at $x$ below $10^{-3}$, is comparable in magnitude with the perturbative one for $xsim 0.01$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا