Do you want to publish a course? Click here

Constraints on the diffuse photon flux with energies above $10^{18}$ eV using the surface detector of the Telescope Array experiment

85   0   0.0 ( 0 )
 Added by Grigory Rubtsov
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the results of the search for ultra-high-energy photons with nine years of data from the Telescope Array surface detector. A multivariate classifier is built upon 16 reconstructed parameters of the extensive air shower. These parameters are related to the curvature and the width of the shower front, the steepness of the lateral distribution function, and the timing parameters of the waveforms sensitive to the shower muon content. A total number of two photon candidates found in the search is fully compatible with the expected background. The $95%,$CL limits on the diffuse flux of the photons with energies greater than $10^{18.0}$, $10^{18.5}$, $10^{19.0}$, $10^{19.5}$ and $10^{20.0}$ eV are set at the level of $0.067$, $0.012$, $0.0036$, $0.0013$, $0.0013~mbox{km}^{-2}mbox{yr}^{-1}mbox{sr}^{-1}$ correspondingly.



rate research

Read More

314 - T. Abu-Zayyad , R. Aida , M. Allen 2013
We search for ultra-high energy photons by analyzing geometrical properties of shower fronts of events registered by the Telescope Array surface detector. By making use of an event-by-event statistical method, we derive upper limits on the absolute flux of primary photons with energies above 10^19, 10^19.5 and 10^20 eV based on the first three years of data taken.
A search for ultra-high energy photons with energies above 1 EeV is performed using nine years of data collected by the Pierre Auger Observatory in hybrid operation mode. An unprecedented separation power between photon and hadron primaries is achieved by combining measurements of the longitudinal air-shower development with the particle content at ground measured by the fluorescence and surface detectors, respectively. Only three photon candidates at energies 1 - 2 EeV are found, which is compatible with the expected hadron-induced background. Upper limits on the integral flux of ultra-high energy photons of 0.038, 0.010, 0.009, 0.008 and 0.007 km$^{-2}$ sr$^{-1}$ yr$^{-1}$ are derived at 95% C.L. for energy thresholds of 1, 2, 3, 5 and 10 EeV. These limits bound the fractions of photons in the all-particle integral flux below 0.14%, 0.17%, 0.42%, 0.86% and 2.9%. For the first time the photon fraction at EeV energies is constrained at the sub-percent level. The improved limits are below the flux of diffuse photons predicted by some astrophysical scenarios for cosmogenic photon production. The new results rule-out the early top-down models $-$ in which ultra-high energy cosmic rays are produced by, e.g., the decay of super-massive particles $-$ and challenge the most recent super-heavy dark matter models.
Comparing the signals measured by the surface and underground scintillator detectors of the Yakutsk Extensive Air Shower Array, we place upper limits on the integral flux and the fraction of primary cosmic-ray photons with energies E > 10^18 eV, E > 2*10^18 eV and E > 4*10^18 eV. The large collected statistics of the showers measured by large-area muon detectors provides a sensitivity to photon fractions < 10^-2, thus achieving precision previously unreachable at ultra-high energies.
A measurement of the cosmic-ray spectrum for energies exceeding $4{times}10^{18}$ eV is presented, which is based on the analysis of showers with zenith angles greater than $60^{circ}$ detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above $5.3{times}10^{18}$ eV, the ankle, the flux can be described by a power law $E^{-gamma}$ with index $gamma=2.70 pm 0.02 ,text{(stat)} pm 0.1,text{(sys)}$ followed by a smooth suppression region. For the energy ($E_text{s}$) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find $E_text{s}=(5.12pm0.25,text{(stat)}^{+1.0}_{-1.2},text{(sys)}){times}10^{19}$ eV.
CHICOS (California HIgh school Cosmic ray ObServatory) is presently an array of more than 140 detectors distributed over a large area (~400 km^2) of southern California, and will consist of 180 detectors at 90 locations in the near future. These sites, located at area schools, are equipped with computerized data acquisition and automatic nightly data transfer (via internet) to our Caltech lab. The installed sites make up the largest currently operating ground array for ultra-high energy cosmic ray research in the northern hemisphere. The goal of CHICOS is to provide data related to the flux and distribution of arrival directions for ultra-high energy cosmic rays. We have performed detailed Monte-Carlo calculations to determine the density and arrival-time distribution of charged particles in extensive air showers for the CHICOS array. Calculations were performed for proton primaries with energies 10^18 to 10^21 eV and zenith angles out to 50 degrees. We have developed novel parameterizations for both distributions as functions of distance from the shower axis, primary energy, and incident zenith angle. These parameterizations are used in aperture calculations and reconstruction of shower data, enabling preliminary analysis of ultra-high energy shower data from CHICOS.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا