Microwave cavity detected spin blockade in a few electron double quantum dot


Abstract in English

We investigate spin states of few electrons in a double quantum dot by coupling them weakly to a magnetic field resilient NbTiN microwave resonator. We observe a reduced resonator transmission if resonator photons and spin singlet states interact. This response vanishes in a magnetic field once the quantum dot ground state changes from a spin singlet into a spin triplet state. Based on this observation, we map the two-electron singlet-triplet crossover by resonant spectroscopy. By measuring the resonator only, we observe Pauli spin blockade known from transport experiments at finite source-drain bias and detect an unconventional spin blockade triggered by the absorption of resonator photons.

Download