Do you want to publish a course? Click here

Magnetic properties of the itinerant A-type antiferromagnet CaCo2P2 studied by 59Co and 31P NMR

77   0   0.0 ( 0 )
 Added by Yuji Furukawa
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

$^{59}$Co and $^{31}$P nuclear magnetic resonance (NMR) measurements in external magnetic and zero magnetic fields have been performed to investigate the magnetic properties of the A-type antiferromagnetic (AFM) CaCo$_2$P$_2$. NMR data, especially, the nuclear spin lattice relaxation rates 1/$T_1$ exhibiting a clear peak, provide clear evidence for the AFM transition at a Neel temperature of $T_{rm N}sim$110~K. The magnetic fluctuations in the paramagnetic state were found to be three-dimensional ferromagnetic, suggesting ferromagnetic interaction between Co spins in the ${it ab}$ plane characterize the spin correlations in the paramagnetic state. In the AFM state below $T_{rm N}$, we have observed $^{59}$Co and $^{31}$P NMR signals under zero magnetic field. From $^{59}$Co NMR data, the ordered magnetic moments of Co are found to be in $ab$ plane and are estimated to be 0.35 $mu_{rm B}$ at 4.2 K. Furthermore, the external field dependence of $^{59}$Co NMR spectrum in the AFM state suggests a very weak magnetic anisotropy of the Co ions and also provides microscopic evidence of canting the Co ordered moments along the external magnetic field directions. The magnetic state of the Co ions in CaCo$_2$P$_2$ is well explained by the local moment picture in the AFM state, although the system is metallic as seen by $1/T_1T$ = constant behavior.



rate research

Read More

$^{139}$La nuclear magnetic resonance (NMR) measurements under pressure ($p = 0-2.64$ GPa) have been carried out to investigate the static and dynamic magnetic properties of the itinerant ferromagnet LaCrGe$_3$. $^{139}$La-NMR spectra for all measured pressures in the ferromagnetically ordered state show a large shift due to the internal field induction $|$$B_{rm int}$$|$ $sim$ 4 T at the La site produced by Cr ordered moments. The change in $B_{rm int}$ by less than 5% with $p$ up to 2.64~GPa indicates that the Cr 3$d$ moments are robust under pressure. The temperature dependence of NMR shift and $B_{rm int}$ suggest that the ferromagnetic order develops below $sim$ 50~K under higher pressures in a magnetic field of $sim$ 7.2 T. Based on the analysis of NMR data using the self-consistent-renormalization (SCR) theory, the spin fluctuations in the paramagnetic state well above $T_{rm C}$ are revealed to be three dimensional ferromagnetic throughout the measured $p$ region.
LaCrGe$_3$ is an itinerant ferromagnet with a Curie temperature of $T_{rm c}$ = 85 K and exhibits an avoided ferromagnetic quantum critical point under pressure through a modulated antiferromagnetic phase as well as tri-critical wing structure in its temperature-pressure-magnetic field ($T$-$p$-$H$) phase diagram. In order to understand the static and dynamical magnetic properties of LaCrGe$_3$, we carried out $^{139}$La nuclear magnetic resonance (NMR) measurements. Based on the analysis of NMR data, using the self-consistent-renomalization (SCR) theory, the spin fluctuations in the paramagnetic state are revealed to be isotropic ferromagnetic and three dimensional (3D) in nature. Moreover, the system is found to follow the generalized Rhodes-Wohfarth relation which is expected in 3D itinerant ferromagnetic systems. As compared to other similar itinerant ferromagnets, the Cr 3$d$ electrons and their spin fluctuations are characterized to have a relatively high degree of localization in real space.
We have performed 31P-NMR measurements on the s-wave superconductor LaRu4P12 to investigate the magnetic field effect of the nuclear spin-lattice relaxation rate 1/T1 on a conventional full-gap superconductor. With increasing magnetic field, the Hebel-Slichter peak immediately below Tc in 1=T1 was suppressed, and the magnetic field dependence of 1/T1 at 0.8 K, well below Tc, was proportional to H2. These behaviors can be fully understood by the orbital pair-breaking effect in a single-band s-wave superconductor
76 - J. Cui , Q.-P. Ding , W. R. Meier 2017
We report $^{75}$As nuclear magnetic resonance (NMR) studies on a new iron-based superconductor CaKFe$_4$As$_4$ with $T_{rm c}$ = 35 K. $^{75}$As NMR spectra show two distinct lines corresponding to the As(1) and As(2) sites close to the K and Ca layers, respectively, revealing that K and Ca layers are well ordered without site
We report results of 75As nuclear magnetic resonance (NMR) experiments on a self-flux grown high-quality single crystal of SrFe2As2. The NMR spectra clearly show sharp first-order antiferromagnetic (AF) and structural transitions occurring simultaneously. The behavior in the vicinity of the transition is compared with our previous study on BaFe2As2. No significant difference was observed in the temperature dependence of the static quantities such as the AF splitting and electric quadrupole splitting. However, the results of the NMR relaxation rate revealed difference in the dynamical spin fluctuations. The stripe-type AF fluctuations in the paramagnetic state appear to be more anisotropic in BaFe2As2 than in SrFe2As2.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا