Do you want to publish a course? Click here

Galaxy And Mass Assembly (GAMA): The sSFR-M* relation part I - $sigma_{mathrm{sSFR}}$-M* as a function of sample, SFR indicator and environment

71   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recently a number of studies have proposed that the dispersion along the star formation rate - stellar mass relation ($sigma_{mathrm{sSFR}}$-M$_{*}$) is indicative of variations in star-formation history (SFH) driven by feedback processes. They found a U-shaped dispersion and attribute the increased scatter at low and high stellar masses to stellar and active galactic nuclei feed-back respectively. However, measuring $sigma_{mathrm{sSFR}}$ and the shape of the $sigma_{mathrm{sSFR}}$-M$_{*}$ relation is problematic and can vary dramatically depending on the sample selected, chosen separation of passive/star-forming systems, and method of deriving star-formation rates ($i.e.$ H$alpha$ emission vs spectral energy distribution fitting). As such, any astrophysical conclusions drawn from measurements of $sigma_{mathrm{sSFR}}$ must consider these dependencies. Here we use the Galaxy And Mass Assembly survey to explore how $sigma_{mathrm{sSFR}}$ varies with SFR indicator for a variety of selections for disc-like `main sequence star-forming galaxies including colour, star-formation rate, visual morphology, bulge-to-total mass ratio, S{e}rsic index and mixture modelling. We find that irrespective of sample selection and/or SFR indicator, the dispersion along the sSFR-M$_{*}$ relation does follow a U-shaped distribution. This suggests that the shape is physical and not an artefact of sample selection or method. We then compare the $sigma_{mathrm{sSFR}}$-M$_{*}$ relation to state-of-the-art hydrodynamical and semi-analytic models and find good agreement with our observed results. Finally, we find that for group satellites this U-shaped distribution is not observed due to additional high scatter populations at intermediate stellar masses.



rate research

Read More

We present a robust calibration of the 1.4GHz radio continuum star formation rate (SFR) using a combination of the Galaxy And Mass Assembly (GAMA) survey and the Faint Images of the Radio Sky at Twenty-cm (FIRST) survey. We identify individually detected 1.4GHz GAMA-FIRST sources and use a late-type, non-AGN, volume-limited sample from GAMA to produce stellar mass-selected samples. The latter are then combined to produce FIRST-stacked images. This extends the robust parametrisation of the 1.4GHz-SFR relation to faint luminosities. For both the individually detected galaxies and our stacked samples, we compare 1.4GHz luminosity to SFRs derived from GAMA to determine a new 1.4GHz luminosity-to-SFR relation with well constrained slope and normalisation. For the first time, we produce the radio SFR-M* relation over 2 decades in stellar mass, and find that our new calibration is robust, and produces a SFR-M* relation which is consistent with all other GAMA SFR methods. Finally, using our new 1.4GHz luminosity-to-SFR calibration we make predictions for the number of star-forming GAMA sources which are likely to be detected in the upcoming ASKAP surveys, EMU and DINGO.
We study the interplay between gas phase metallicity (Z), specific star formation rate (SSFR) and neutral hydrogen gas (HI) for galaxies of different stellar masses. Our study uses spectroscopic data from GAMA and SDSS star forming galaxies, as well as HI-detection from the ALFALFA and GASS public catalogues. We present a model based on the Z-SSFR relation that shows that at a given stellar mass, depending on the amount of gas, galaxies will follow opposite behaviours. Low-mass galaxies with a large amount of gas will show high SSFR and low metallicities, while low-mass galaxies with small amounts of gas will show lower SSFR and high metallicities. In contrast, massive galaxies with a large amount of gas will show moderate SSFR and high metallicities, while massive galaxies with small amounts of gas will show low SSFR and low metallicities. Using ALFALFA and GASS counterparts, we find that the amount of gas is related to those drastic differences in Z and SSFR for galaxies of a similar stellar mass.
The scatter (${rmsigma_{text{sSFR}}}$) of the specific star formation rates (sSFRs) of galaxies is a measure of the diversity in their star formation histories (SFHs) at a given mass. In this paper we employ the EAGLE simulations to study the dependence of the ${rm sigma_{text{sSFR}}}$ of galaxies on stellar mass (${rm M_{star}}$) through the ${rm sigma_{text{sSFR}}}$-${rm M_{star}}$ relation in $ {rm z sim 0-4}$. We find that the relation evolves with time, with the dispersion depending on both stellar mass and redshift. The models point to an evolving U-shape form for the ${rm sigma_{text{sSFR}}}$-${rm M_{star}}$ relation with the scatter being minimal at a characteristic mass $M^{star}$ of ${rm 10^{9.5}}$ ${rm M_{odot}}$ and increasing both at lower and higher masses. This implication is that the diversity of SFHs increases towards both at the low- and high-mass ends. We find that active galactic nuclei feedback is important for increasing the ${rm sigma_{text{sSFR}}}$ for high mass objects. On the other hand, we suggest that SNe feedback increases the ${rm sigma_{text{sSFR}}}$ of galaxies at the low-mass end. We also find that excluding galaxies that have experienced recent mergers does not significantly affect the ${rm sigma_{text{sSFR}}}$-${rm M_{star}}$ relation. Furthermore, we employ the combination of the EAGLE simulations with the radiative transfer code SKIRT to evaluate the effect of SFR/stellar mass diagnostics in the ${rm sigma_{text{sSFR}}}$-${rm M_{star}}$ relation and find that the ${rm SFR/M_{star}}$ methodologies (e.g. SED fitting, UV+IR, UV+IRX-$beta$) widely used in the literature to obtain intrinsic properties of galaxies have a large effect on the derived shape and normalization of the ${rm sigma_{text{sSFR}}}$-${rm M_{star}}$ relation.
We study the evolution of the star formation rate (SFR) - stellar mass (M_star) relation and specific star formation rate (sSFR) of star forming galaxies (SFGs) since a redshift z~5.5 using 2435 (4531) galaxies with highly reliable (reliable) spectroscopic redshifts in the VIMOS Ultra-Deep Survey (VUDS). It is the first time that these relations can be followed over such a large redshift range from a single homogeneously selected sample of galaxies with spectroscopic redshifts. The log(SFR) - log(M_star) relation for SFGs remains roughly linear all the way up to z=5 but the SFR steadily increases at fixed mass with increasing redshift. We find that for stellar masses M_star>3.2 x 10^9 M_sun the SFR increases by a factor ~13 between z=0.4 and z=2.3. We extend this relation up to z=5, finding an additional increase in SFR by a factor 1.7 from z=2.3 to z=4.8 for masses M_star > 10^10 M_sun. We observe a turn-off in the SFR-M_star relation at the highest mass end up to a redshift z~3.5. We interpret this turn-off as the signature of a strong on-going quenching mechanism and rapid mass growth. The sSFR increases strongly up to z~2 but it grows much less rapidly in 2<z<5. We find that the shape of the sSFR evolution is not well reproduced by cold gas accretion-driven models or the latest hydrodynamical models. Below z~2 these models have a flatter evolution (1+z)^{Phi} with Phi=2-2.25 compared to the data which evolves more rapidly with Phi=2.8+-0.2. Above z~2, the reverse is happening with the data evolving more slowly with Phi=1.2+-0.1. The observed sSFR evolution over a large redshift range 0<z<5 and our finding of a non linear main sequence at high mass both indicate that the evolution of SFR and M_star is not solely driven by gas accretion. The results presented in this paper emphasize the need to invoke a more complex mix of physical processes {abridge}
We use 80922 galaxies in the Galaxy And Mass Assembly (GAMA) survey to measure the galaxy luminosity function (LF) in different environments over the redshift range 0.04<z<0.26. The depth and size of GAMA allows us to define samples split by colour and redshift to measure the dependence of the LF on environment, redshift and colour. We find that the LF varies smoothly with overdensity, consistent with previous results, with little environmental dependent evolution over the last 3 Gyrs. The modified GALFORM model predictions agree remarkably well with our LFs split by environment, particularly in the most overdense environments. The LFs predicted by the model for both blue and red galaxies are consistent with GAMA for the environments and luminosities at which such galaxies dominate. Discrepancies between the model and the data seen in the faint end of the LF suggest too many faint red galaxies are predicted, which is likely to be due to the over-quenching of satellite galaxies. The excess of bright blue galaxies predicted in underdense regions could be due to the implementation of AGN feedback not being sufficiently effective in the lower mass halos.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا