Do you want to publish a course? Click here

Suppression of Low-mass Galaxy Formation around Quasars at z~2-3

183   0   0.0 ( 0 )
 Added by Hisakazu Uchiyama
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have carried out deep and wide field imaging observations with narrow bands targeting 11 quasar fields to systematically study the possible photoevaporation effect of quasar radiation on surrounding low mass galaxies at $zsim2-3$. We focused on Lyman alpha emitters (LAEs) at the same redshifts as the quasars that lie within the quasar proximity zones, where the ultra-violet radiation from the quasars is higher than the average background at that epoch. We found that LAEs with high rest-frame equivalent width of Ly$alpha$ emission ($EW_0$) of $gtrsim 150$AA$~$ with low stellar mass ($lesssim 10^8 M_{odot}$), are predominantly scarce in the quasar proximity zones, suggesting that quasar photoevaporation effects may be taking place. The halo mass of LAEs with $EW_0>150$AA$~$ is estimated to be $3.6^{+12.7}_{-2.3}times10^9 M_{odot}$ either from the Spectral Energy Distribution (SED) fitting or the main sequence. Based on a hydrodynamical simulation, the predicted delay in star formation under a local UV background intensity with $J ( u_L)gtrsim10^{-21}$ erg s$^{-1}$ cm$^{-2}$ Hz$^{-1}$ sr$^{-1}$ for galaxies having less than this halo mass is about $>20$ Myr, which is longer than the expected age of LAEs with $EW_0>150$AA. On the other hand, the photoevaporation seems to be less effective around very luminous quasars, which is consistent with the idea that these quasars are still in an early stage of quasar activity.



rate research

Read More

We investigate the relation between star formation rates ($dot{M}_{s}$) and AGN properties in optically selected type 1 quasars at $2<z<3$ using data from Herschel and the SDSS. We find that $dot{rm{M}}_s$ remains approximately constant with redshift, at $300pm100~rm{M}_{odot}$yr$^{-1}$. Conversely, $dot{rm{M}}_s$ increases with AGN luminosity, up to a maximum of $sim600~rm{M}_{odot}$yr$^{-1}$, and with CIV FWHM. In context with previous results, this is consistent with a relation between $dot{rm{M}}_s$ and black hole accretion rate ($dot{rm{M}}_{bh}$) existing in only parts of the $z-dot{rm{M}}_{s}-dot{rm{M}}_{bh}$ plane, dependent on the free gas fraction, the trigger for activity, and the processes that may quench star formation. The relations between $dot{rm{M}}_s$ and both AGN luminosity and CIV FWHM are consistent with star formation rates in quasars scaling with black hole mass, though we cannot rule out a separate relation with black hole accretion rate. Star formation rates are observed to decline with increasing CIV equivalent width. This decline can be partially explained via the Baldwin effect, but may have an additional contribution from one or more of three factors; $M_i$ is not a linear tracer of L$_{2500}$, the Baldwin effect changes form at high AGN luminosities, and high CIV EW values signpost a change in the relation between $dot{rm{M}}_s$ and $dot{rm{M}}_{bh}$. Finally, there is no strong relation between $dot{rm{M}}_s$ and Eddington ratio, or the asymmetry of the CIV line. The former suggests that star formation rates do not scale with how efficiently the black hole is accreting, while the latter is consistent with CIV asymmetries arising from orientation effects.
We demonstrate that the UV brightest quasars at z=1-2 live in overdense environments. This is based on an analysis of deep Hubble Space Telescope WFC3 G141 grism spectroscopy of the galaxies along the lines-of-sight to UV luminous quasars in the redshift range z=1-2. This constitutes some of the deepest grism spectroscopy performed by WFC3, with 4 roll angles spread over a year of observations to mitigate the effect of overlapping spectra. Of the 12 quasar fields studied, 8 display evidence for a galaxy overdensity at the redshift of the quasar. One of the overdensities, PG0117+213 at z=1.50, has potentially 36 spectroscopically confirmed members, consisting of 19 with secure redshifts and 17 with single-line redshifts, within a cylinder of radius ~700 kpc. Its halo mass is estimated to be log (M/Msol)=14.7. This demonstrates that spectroscopic and narrow-band observations around distant UV bright quasars may be an excellent route for discovering protoclusters. Our findings agree with previous hints from statistical observations of the quasar population and theoretical works, as feedback regulated black hole growth predicts a correlation between quasar luminosity and halo mass. We also present the high signal-to-noise rest-frame optical spectral and photometric properties of the quasars themselves.
324 - A. Meiksin 2015
We compare predictions of large-scale cosmological hydrodynamical simulations for neutral hydrogen absorption signatures in the vicinity of 1e11 - 1e12.5 MSun haloes with observational measurements. Two different hydrodynamical techniques and a variety of prescriptions for gas removal in high density regions are examined. Star formation and wind feedback play only secondary roles in the HI absorption signatures outside the virial radius, but play important roles within. Accordingly, we identify three distinct gaseous regions around a halo: the virialized region, the mesogalactic medium outside the virial radius arising from the extended haloes of galaxies out to about two turnaround radii, and the intergalactic medium beyond. Predictions for the amount of absorption from the mesogalactic and intergalactic media are robust across different methodologies, and the predictions agree with the amount of absorption observed around star-forming galaxies and QSO host galaxies. Recovering the measured amount of absorption within the virialized region, however, requires either a higher dynamic range in the simulations, additional physics, or both.
We compare the rest-frame ultraviolet and rest-frame optical morphologies of 2 < z < 3 star-forming galaxies in the GOODS-S field using Hubble Space Telescope WFC3 and ACS images from the CANDELS, GOODS, and ERS programs. We show that the distribution of sizes and concentrations for 1.90 < z < 2.35 galaxies selected via their rest-frame optical emission-lines are statistically indistinguishable from those of Lyman-alpha emitting systems found at z ~ 2.1 and z ~ 3.1. We also show that the z > 2 star-forming systems of all sizes and masses become smaller and more compact as one shifts the observing window from the UV to the optical. We argue that this offset is due to inside-out galaxy formation over the first ~ 2 Gyr of cosmic time.
We present deep near-infrared spectroscopy of six quasars at 6.1<z<6.7 with VLT/X-Shooter and Gemini-N/GNIRS. Our objects, originally discovered through a wide-field optical survey with the Hyper Suprime-Cam (HSC) Subaru Strategic Program (HSC-SSP), have the lowest luminosities (-25.5< M1450<-23.1 mag) of the z>5.8 quasars with measured black hole masses. From single-epoch mass measurements based on MgII2798, we find a wide range in black hole masses, from M_BH=10^7.6 to 10^9.3 Msun. The Eddington ratios L_bol/L_Edd range from 0.16 to 1.1, but the majority of the HSC quasars are powered by M_BH=10^9 Msun supermassive black holes (SMBHs) accreting at sub-Eddington rates. The Eddington ratio distribution of the HSC quasars is inclined to lower accretion rates than those of Willott et al. (2010a), who measured the black hole masses for similarly faint z=6 quasars. This suggests that the global Eddington ratio distribution is wider than has previously been thought. The presence of M_BH=10^9 Msun SMBHs at z=6 cannot be explained with constant sub-Eddington accretion from stellar remnant seed black holes. Therefore, we may be witnessing the first buildup of the most massive black holes in the first billion years of the universe, the accretion activity of which is transforming from active growth to a quiescent phase. Measurements of a larger complete sample of z>6 low-luminosity quasars, as well as deeper observations with future facilities will enable us to better understand the early SMBH growth in the reionization epoch.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا