Do you want to publish a course? Click here

Unification of Flavor SU(3) Analyses of Heavy Hadron Weak Decays

85   0   0.0 ( 0 )
 Added by Yuji Shi
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

Analyses of heavy mesons and baryons hadronic charmless decays using the flavor SU(3) symemtry can be formulated in two different forms. One is to construct the SU(3) irreducible representation amplitude (IRA) by decomposing effective Hamiltonian, and the other is to draw the topological diagrams (TDA). In the flavor SU(3) limit, we study various $B/Dto PP,VP,VV$, $B_cto DP/DV$ decays, and two-body nonleptonic decays of beauty/charm baryons, and demonstrate that when all terms are included these two ways of analyzing the decay amplitudes are completely equivalent. Furthermore we clarify some confusions in drawing topological diagrams using different ways of describing beauty/charm baryons.



rate research

Read More

200 - Hai-Bo Li , Mao-Zhi Yang 2008
In this paper, we calculate the decay rates of $D^+ to D^0 e^+ u$, $D^+_S to D^0 e^+ u$, $B^0_S to B^+ e^- bar{ u}$, $D^+_S to D^+ e^- e^+$ and $B^0_S to B^0 e^-e^+$ semileptonic decay processes, in which only the light quarks decay, while the heavy flavors remain unchanged. The branching ratios of these decay processes are calculated with the flavor SU(3) symmetry. The uncertainties are estimated by considering the SU(3) breaking effect. We find that the decay rates are very tiny in the framework of the Standard Model. We also estimate the sensitivities of the measurements of these rare decays at the future experiments, such as BES-III, super-$B$ and LHC-$b$.
Assuming the ${bar D}^0, D^-, D^-_s$ and $B^+, B^0, B_s^0$ mesons belong to triplets of SU(3) flavor symmetry, we analyse the form factors in the semileptonic decays of these mesons. Both quark and meson mass differences are taken into account. We find a number of relations, in agreement with the present data as well as with previous analyses, and predict certain ratios of form factors, not yet measured, most notably the D meson decay constant $f_D = 209 pm 39$ MeV.
We find expressions for the weak decay amplitudes of baryons containing two b quarks (or one b and one c quark -- many relationship are the same) in terms of unknown reduced matrix elements. This project was originally motivated by the request of the FNAL Run II b Physics Workshop organizers for a guide to experimentalists in their search for as yet unobserved hadrons. We include an analysis of linear SU(3) breaking terms in addition to relationships generated by unbroken SU(3) symmetry, and relate these to expressions in terms of the complete set of possible reduced matrix elements.
We perform a SU(3) analysis for both semi-leptonic and non-leptonic heavy meson weak decays into a pseudoscalar meson and a fully-light tetraquark in 10 or 27 representation. A reduction of the SU(3) representation tensor for the fully-light tetraquarks is produced and all the flavor components for each representation tensor are listed. The decay channels we analysis include $B/D to U/T~P~l u$, $B/D to U/T~P $ and $B_c to U/T~P/D$, with $U/T$ represents a fully-light tetraquark in 10 or 27 representation and $P$ is a pseudoscalar meson. Finally, among these results we list all the golden decay channels which are expected to have more possibilities to be observed in experiments.
The charmonium-like exotic states $Y(4230)$ and the less known $Y(4320)$, produced in $e^+e^-$ collisions, are sources of positive parity exotic hadrons in association with photons or pseudoscalar mesons. We analyze the radiative and pion decay channels in the compact tetraquark scheme, with a method that proves to work equally well in the most studied $D^*to gamma/pi+D$ decays. The decay of the vector $Y$ into a pion and a $Z_c$ state requires a flip of charge conjugation and isospin that is described appropriately in the formalism used. Rates however are found to depend on the fifth power of pion momentum which would make the final states $pi Z_c(4020)$ strongly suppressed with respect to $pi Z_c(3900)$. The agreement with BES III data would be improved considering the $pi Z_c(4020)$ events to be fed by the tail of the $Y(4320)$ resonance under the $Y(4230)$. These results should renovate the interest in further clarifying the emerging experimental picture in this mass region.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا