Cavity-embedded quantum emitters show strong modifications of free space radiation properties such as an enhanced decay known as the Purcell effect. The central parameter is the cooperativity $C$, the ratio of the square of the coherent cavity coupling strength over the product of cavity and emitter decay rates. For a single emitter, $C$ is independent of the transition dipole moment and dictated by geometric cavity properties such as finesse and mode waist. In a recent work [Phys. Rev. Lett. 119, 093601 (2017)] we have shown that collective excitations in ensembles of dipole-dipole coupled quantum emitters show a disentanglement between the coherent coupling to the cavity mode and spontaneous free space decay. This leads to a strong enhancement of the cavity cooperativity around certain collective subradiant antiresonances. Here, we present a quantum Langevin equations approach aimed at providing results beyond the classical coupled dipoles model. We show that the subradiantly enhanced cooperativity imprints its effects onto the cavity output field quantum correlations while also strongly increasing the cavity-emitter systems collective Kerr nonlinear effect.