High thermoelectric performance in the hexagonal bilayer structure consisting of light boron and phosphorus elements


Abstract in English

Two-dimensional layered materials have attracted tremendous attentions due to their extraordinary physical and chemical properties. Using first-principles calculations and Boltzmann transport theory, we give an accurate prediction of the thermoelectric properties of boron phosphide (BP) bilayer, where the carrier relaxation time is treated within the framework of electron-phonon coupling. It is found that the lattice thermal conductivity of BP bilayer is much lower than that of its monolayer structure, which can be attributed to the presence of van der Waals interactions. On the other hand, the graphene-like BP bilayer shows very high carrier mobility with a moderate band gap of 0.88 eV. As a consequence, a maximum p-type ZT value of ~1.8 can be realized along the x-direction at 1200 K, which is amazingly high for systems consisting of light elements only. Moreover, we obtain almost identical p- and n-type ZT of ~1.6 along the y-direction, which is very desirable for fabrication of thermoelectric modules with comparative efficiencies. Collectively, these findings demonstrate great advantages of the layered structures containing earth-abundant elements for environment-friendly thermoelectric applications.

Download