No Arabic abstract
An axion-like particle (ALP) offers a new direction in electroweak baryogenesis because the periodic nature enables it to trigger a strong first-order phase transition insensitively to the decay constant $f$. For $f$ much above TeV, the ALP-induced electroweak phase transition is approximately described by adiabatic processes, distinguishing our scenario for electroweak baryogenesis from the conventional ones. We show that, coupled to the electroweak anomaly, the ALP can naturally realize spontaneous electroweak baryogenesis to solve the matter-antimatter asymmetry problem for $f$ in the range between about $10^5$ GeV and $10^7$ GeV. In such an ALP window, the $CP$ violation for baryogenesis is totally free from the experimental constraints, especially from the recently improved limit on the electron electric dipole moment. Future searches for ALPs could probe our scenario while revealing the connection between electroweak symmetry breaking and baryogenesis.
In the minimal supersymmetric standard model (MSSM), a strongly first-order electroweak phase transition (EWPT) is only possible in a confined parameter region where one of the scalar top quarks is lighter than the top quark and the other one is as heavy as the SUSY breaking scale. If the MSSM is enlarged to accommodate vector-like quarks and their superpartners, we find that the strongly first-order EWPT is possible without requiring light scalar top quark at the one-loop level, in the limit where the lightest scalar Higgs boson of the MSSM behaves like the Higgs boson of the standard model and the other Higgs bosons are all as heavy as the SUSY breaking scale. The strength of the first-order EWPT is found to be dependent on the mass of the lightest neutral Higgs boson and the mixing effects of the vector-like scalar quarks.
We investigate the viability of electroweak baryogenesis in a model with a first order electroweak phase transition induced by the addition of two gauge singlet scalars. A vector-like lepton doublet is introduced in order to provide CP violating interactions with the singlets and Standard Model leptons, and the asymmetry generation dynamics are examined using the vacuum expectation value insertion approximation. We find that such a model is readily capable of generating sufficient baryon asymmetry while satisfying electron electric dipole moment and collider phenomenology constraints.
We investigate if the CP violation necessary for successful electroweak baryogenesis may be sourced by the neutrino Yukawa couplings. In particular, we consider an electroweak scale Seesaw realization with sizable Yukawas where the new neutrino singlets form (pseudo)-Dirac pairs, as in the linear or inverse Seesaw variants. We find that the baryon asymmetry obtained strongly depends on how the neutrino masses vary within the bubble walls. Moreover, we also find that flavour effects critically impact the final asymmetry obtained and that, taking them into account, the observed value may be obtained in some regions of the parameter space. This source of CP violation naturally avoids the strong constraints from electric dipole moments and links the origin of the baryon asymmetry of the Universe with the mechanism underlying neutrino masses. Interestingly, the mixing of the active and heavy neutrinos needs to be sizable and could be probed at the LHC or future collider experiments.
Conventional scenarios of electroweak (EW) baryogenesis are strongly constrained by experimental searches for CP violation beyond the SM. We propose an alternative scenario where the EW phase transition and baryogenesis occur at temperatures of the order of a new physics threshold $Lambda$ far above the Fermi scale, say, in the $100-1000$ TeV range. This way the needed new sources of CP-violation, together with possible associated flavor-violating effects, decouple from low energy observables. The key ingredient is a new CP- and flavor-conserving sector at the Fermi scale that ensures the EW symmetry remains broken and sphalerons suppressed at all temperatures below $Lambda$. We analyze a minimal incarnation based on a linear $O(N)$ model. We identify a specific large-$N$ limit where the effects of the new sector are vanishingly small at zero temperature while being significant at finite temperature. This crucially helps the construction of realistic models. A number of accidental factors, ultimately related to the size of the relevant SM couplings, force $N$ to be above $sim 100$. Such a large $N$ may seem bizarre, but it does affect the simplicity of the model and in fact it allows us to carry out a consistent re-summation of the leading contributions to the thermal effective potential. Extensions of the SM Higgs sector can be compatible with smaller values $Nsim 20-30$. Collider signatures are all parametrically suppressed by inverse powers of $N$ and may be challenging to probe, but present constraints from direct dark matter searches cannot be accommodated in the minimal model. We discuss various extensions that satisfy all current bounds. One of these involves a new gauge force confining at scales between $sim1$ GeV and the weak scale.
Axion-Like particles (ALPs) appear in various new physics models with spontaneous global symmetry breaking. When the ALP mass is in the range of MeV to GeV, the cosmology and astrophysics bounds are so far quite weak. In this work, we investigate such light ALPs through the ALP-strahlung production process pp to Va(a to {gamma}{gamma}) at the 14TeV LHC with an integrated luminosity of 3000 fb^(-1)(HL-LHC). Building on the concept of jet image which uses calorimeter towers as the pixels of the image and measures a jet as an image, we investigate the potential of machine learning techniques based on convolutional neural network (CNN) to identify the highly boosted ALPs which decay to a pair of highly collimated photons. With the CNN tagging algorithm, we demonstrate that our approach can extend current LHC sensitivity and probe the ALP mass range from 0.3GeV to 10GeV. The obtained bounds are significantly stronger than the existing limits on the ALP-photon coupling.