Systematic design and realization of double-negative acoustic metamaterials by topology optimization


Abstract in English

Double-negative acoustic metamaterials (AMMs) offer the promising ability of superlensing for applications in ultrasonography, biomedical sensing and nondestructive evaluation. Here, under the simultaneous increasing or non-increasing mechanisms, we develop a unified topology optimization framework considering the different microstructure symmetries, minimal structural feature sizes and dispersion extents of effective parameters. Then we apply the optimization framework to furnish the heuristic resonance-cavity-based and space-coiling metamaterials with broadband double negativity. Meanwhile, we demonstrate the essences of double negativity derived from the novel artificial multipolar LC and Mie resonances which can be induced by controlling mechanisms in optimization. Furthermore, abundant numerical simulations validate the double negativity, negative refraction, enhancements of evanescent waves and subwavelengh imaging for the optimized AMMs. Finally, we experimentally show the desired broadband subwavelengh imaging using the 3D-printed optimized space-coiling metamaterial. The present methodology and broadband metamaterials provide the ideal strategy of constructing AMMs for subwavelengh imaging technology.

Download