A population is considered stationary if the growth rate is zero and the age structure is constant. It thus follows that a population is considered non-stationary if either its growth rate is non-zero and/or its age structure is non-constant. We propose three properties that are related to the stationary population identity (SPI) of population biology by connecting it with stationary populations and non-stationary populations which are approaching stationarity. One of these important properties is that SPI can be applied to partition a population into stationary and non-stationary components. These properties provide deeper insights into cohort formation in real-world populations and the length of the duration for which stationary and non-stationary conditions hold. The new concepts are based on the time gap between the occurrence of stationary and non-stationary populations within the SPI framework that we refer to as Oscillatory SPI and the Amplitude of SPI. This article will appear in Bulletin of Mathematical Biology (Springer)
The stationary asymptotic properties of the diffusion limit of a multi-type branching process with neutral mutations are studied. For the critical and subcritical processes the interesting limits are those of quasi-stationary distributions conditioned on non-extinction. Limiting distributions for supercritical and critical processes are found to collapse onto rays aligned with stationary eigenvectors of the mutation rate matrix, in agreement with known results for discrete multi-type branching processes. For the sub-critical process the quasi-stationary distribution is obtained to first order in the overall mutation rate, which is assumed to be small. The sampling distribution over allele types for a sample of given finite size is found to agree to first order in mutation rates with the analogous sampling distribution for a Wright-Fisher diffusion with constant population size.
Careys Equality pertaining to stationary models is well known. In this paper, we have stated and proved a fundamental theorem related to the formation of this Equality. This theorem will provide an in-depth understanding of the role of each captive subject, and their corresponding follow-up duration in a stationary population. We have demonstrated a numerical example of a captive cohort and the survival pattern of medfly populations. These results can be adopted to understand age-structure and aging process in stationary and non-stationary population population models. Key words: Captive cohort, life expectancy, symmetric patterns.
We study simple stochastic scenarios, based on birth-and-death Markovian processes, that describe populations with Allee effect, to account for the role of demographic stochasticity. In the mean-field deterministic limit we recover well-known deterministic evolution equations widely employed in population ecology. The mean-time to extinction is in general obtained by the Wentzel-Kramers-Brillouin (WKB) approximation for populations with strong and weak Allee effects. An exact solution for the mean time to extinction can be found via a recursive equation for special cases of the stochastic dynamics. We study the conditions for the validity of the WKB solution and analyze the boundary between the weak and strong Allee effect by comparing exact solutions with numerical simulations.
Consider a population evolving from year to year through three seasons: spring, summer and winter. Every spring starts with $N$ dormant individuals waking up independently of each other according to a given distribution. Once an individual is awake, it starts reproducing at a constant rate. By the end of spring, all individuals are awake and continue reproducing independently as Yule processes during the whole summer. In the winter, $N$ individuals chosen uniformly at random go to sleep until the next spring, and the other individuals die. We show that because an individual that wakes up unusually early can have a large number of surviving descendants, for some choices of model parameters the genealogy of the population will be described by a $Lambda$-coalescent. In particular, the beta coalescent can describe the genealogy when the rate at which individuals wake up increases exponentially over time. We also characterize the set of all $Lambda$-coalescents that can arise in this framework.
We review recent progress in the understanding of the role of multiple- and simultaneous multiple merger coalescents as models for the genealogy in idealised and real populations with exceptional reproductive behaviour. In particular, we discuss models with `skewed offspring distribution (or under other non-classical evolutionary forces) which lead in the single locus haploid case to multiple merger coalescents, and in the multi-locus diploid case to simultaneous multiple merger coalescents. Further, we discuss inference methods under the infinitely-many sites model which allow both model selection and estimation of model parameters under these coalescents.
Arni S.R. Srinivasa Rao
,James R. Carey
.
(2018)
.
"On the Three Properties of Stationary Populations and knotting with Non-Stationary Populations"
.
Arni S.R. Srinivasa Rao
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا