Do you want to publish a course? Click here

The VLA-COSMOS 3 GHz Large Project: Star formation properties and radio luminosity functions of AGN with moderate-to-high radiative luminosities out to $zsim6$

95   0   0.0 ( 0 )
 Added by Lana Ceraj
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study a sample of 1,604 moderate-to-high radiative luminosity active galactic nuclei (HLAGN) selected at 3 GHz within the VLA-COSMOS 3 GHz Large Project. These were classified by combining multiple AGN diagnostics: X-ray data, mid-infrared data and broad-band spectral energy distribution fitting. We decompose the total radio 1.4 GHz luminosity ($mathrm{L_{1.4 GHz,TOT}}$) into the emission originating from star formation and AGN activity by measuring the excess in $mathrm{L_{1.4 GHz,TOT}}$ relative to the infrared-radio correlation of star-forming galaxies. To quantify the excess, for each source we calculate the AGN fraction ($mathrm{f_{AGN}}$), the fractional contribution of AGN activity to $mathrm{L_{1.4 GHz,TOT}}$. The majority of the HLAGN, $(68.0pm1.5)%$, are dominated by star-forming processes ($f_{AGN}leq0.5$), while $(32.0pm1.5)%$ are dominated by AGN-related radio emission ($0.5<f_{AGN}leq1$). We use the AGN-related 1.4 GHz emission to derive the 1.4 GHz AGN luminosity functions of HLAGN. By assuming pure density and pure luminosity evolution models we constrain their cosmic evolution out to $zsim6$, finding $mathrm{Phi^* (z) propto (1+z)^{(2.64pm0.10)+(-0.61pm0.04) z}}$ and $mathrm{L^* (z) propto (1+z)^{(3.97pm0.15) + (-0.92pm0.06)z}}$. These evolutionary laws show that the number and luminosity density of HLAGN increased from higher redshifts ($zsim6$) up to a maximum in the redshift range $ 1<z<2.5$, followed by a decline towards local values. By scaling the 1.4 GHz AGN luminosity to kinetic luminosity using the standard conversion, we estimate the kinetic luminosity density as a function of redshift. We compare our result to the semi-analytic models of radio mode feedback finding that this feedback could have played an important role in the context of AGN-host coevolution in HLAGN which show evidence of AGN-related radio emission ($f_{AGN}>0$).



rate research

Read More

We provide a coherent, uniform measurement of the evolution of the logarithmic star formation rate (SFR) - stellar mass ($M_*$) relation, called the main sequence of star-forming galaxies (MS), for galaxies out to $zsim5$. We measure the MS using mean stacks of 3 GHz radio continuum images to derive average SFRs for $sim$200,000 mass-selected galaxies at $z>0.3$ in the COSMOS field. We describe the MS relation adopting a new model that incorporates a linear relation at low stellar mass (log($M_*$/M$_odot$)$<$10) and a flattening at high stellar mass that becomes more prominent at low redshift ($z<1.5$). We find that the SFR density peaks at $1.5<z<2$ and at each epoch there is a characteristic stellar mass ($M_* = 1 - 4 times 10^{10}mathrm{M}_odot$) that contributes the most to the overall SFR density. This characteristic mass increases with redshift, at least to $zsim2.5$. We find no significant evidence for variations in the MS relation for galaxies in different environments traced by the galaxy number density at $0.3<z<3$, nor for galaxies in X-ray groups at $zsim0.75$. We confirm that massive bulge-dominated galaxies have lower SFRs than disk-dominated galaxies at a fixed stellar mass at $z<1.2$. As a consequence, the increase in bulge-dominated galaxies in the local star-forming population leads to a flattening of the MS at high stellar masses. This indicates that mass-quenching is linked with changes in the morphological composition of galaxies at a fixed stellar mass.
We explore the multiwavelength properties of AGN host galaxies for different classes of radio-selected AGN out to z$lesssim$6 via a multiwavelength analysis of about 7700 radio sources in the COSMOS field. The sources were selected with the Very Large Array (VLA) at 3 GHz (10 cm) within the VLA-COSMOS 3 GHz Large Project, and cross-matched with multiwavelength ancillary data. This is the largest sample of high-redshift (z$lesssim$6) radio sources with exquisite photometric coverage and redshift measurements available. We constructed a sample of moderate-to-high radiative luminosity AGN (HLAGN) via spectral energy distribution (SED) decomposition combined with standard X-ray and mid-infrared diagnostics. Within the remainder of the sample we further identified low-to-moderate radiative luminosity AGN (MLAGN) via excess in radio emission relative to the star formation rates in their host galaxies. We show that AGN power in HLAGN occurs predominantly in radiative form, while MLAGN display a substantial mechanical AGN luminosity component. We found significant differences in the host properties of the two AGN classes, as a function of redshift. At z$<$1.5, MLAGN appear to reside in significantly more massive and less star-forming galaxies compared to HLAGN. At z$>$1.5, we observed a reversal in the behaviour of the stellar mass distributions with the HLAGN populating the higher stellar mass tail. We interpret this finding as a possible hint of the downsizing of galaxies hosting HLAGN, with the most massive galaxies triggering AGN activity earlier than less massive galaxies, and then fading to MLAGN at lower redshifts. Our conclusion is that HLAGN and MLAGN samples trace two distinct galaxy and AGN populations in a wide range of redshifts, possibly resembling the radio AGN types often referred to as radiative- and jet-mode (or high- and low-excitation), respectively.
We study the moderate-to-high radiative luminosity active galactic nuclei (HLAGN) within the VLA-COSMOS 3 GHz Large Project. The survey covers 2.6 square degrees centered on the COSMOS field with a 1$sigma$ sensitivity of 2.3 $mathrm{mu Jy}$/beam across the field. This provides the simultaneously largest and deepest radio continuum survey available to date with exquisite multi-wavelength coverage. The survey yields 10,830 radio sources with signal-to-noise ratios $geq$5. A subsample of 1,604 HLAGN is analyzed here. These were selected via a combination of X-ray luminosity and mid-infrared colors. We derive luminosity functions for these AGN and constrain their cosmic evolution out to a redshift of $zsim6$, for the first time decomposing the star formation and AGN contributions to the radio continuum emission in the AGN. We study the evolution of number density and luminosity density finding a peak at $zsim1.5$ followed by a decrease out to a redshift $zsim6$.
We make use of the deep Karl G. Jansky Very Large Array (VLA) COSMOS radio observations at 3 GHz to infer radio luminosity functions of star-forming galaxies up to redshifts of z~5 based on approximately 6000 detections with reliable optical counterparts. This is currently the largest radio-selected sample available out to z~5 across an area of 2 square degrees with a sensitivity of rms=2.3 ujy/beam. By fixing the faint and bright end shape of the radio luminosity function to the local values, we find a strong redshift trend that can be fitted with a pure luminosity evolution L~(1+z)^{(3.16 +- 0.2)-(0.32 +- 0.07) z}. We estimate star formation rates (SFRs) from our radio luminosities using an infrared (IR)-radio correlation that is redshift dependent. By integrating the parametric fits of the evolved luminosity function we calculate the cosmic SFR density (SFRD) history since z~5. Our data suggest that the SFRD history peaks between 2<z<3 and that the ultraluminous infrared galaxies (ULIRGs; 100 Msol/yr<SFR<1000 Msol/yr) contribute up to ~25% to the total SFRD in the same redshift range. Hyperluminous infrared galaxies (HyLIRGs; SFR>1000 Msol/yr) contribute an additional <2% in the entire observed redshift range. We find evidence of a potential underestimation of SFRD based on ultraviolet (UV) rest-frame observations of Lyman break galaxies (LBGs) at high redshifts (z>4) on the order of 15-20%, owing to appreciable star formation in highly dust-obscured galaxies, which might remain undetected in such UV observations.
We examine the behaviour of the infrared-radio correlation (IRRC) over the range $0<z<6$ using new, highly sensitive 3GHz observations with the Karl G. Jansky Very Large Array (VLA) and infrared data from the Herschel Space Observatory in the 2deg$^{2}$ COSMOS field. We distinguish between objects where emission is believed to arise solely from star-formation, and those where an active galactic nucleus (AGN) is thought to be present. We account for non-detections in the radio or in the infrared using a doubly-censored survival analysis. We find that the IRRC of star-forming galaxies, quantified by the infrared-to-1.4GHz radio luminosity ratio ($q_{rm TIR}$), decreases with increasing redshift: $q_{rm TIR}(z)=(2.88pm0.03)(1+z)^{-0.19pm0.01}$. Moderate-to-high radiative luminosity AGN do not follow the same $q_{rm TIR}$$(z)$ trend, having a lower normalisation and steeper decrease with redshift. We cannot rule out the possibility that unidentified AGN contributions only to the radio regime may be steepening the observed $q_{rm TIR}(z)$ trend of the star-forming population. An increasing fractional contribution to the observed 3GHz flux by free-free emission of star-forming galaxies may also affect the derived evolution. However, we find that the standard (M82-based) assumption of the typical radio spectral energy distribution (SED) for star-forming galaxies is inconsistent with our results. This suggests a more complex shape of the typical radio SED for star-forming galaxies, and that imperfect $K$ corrections in the radio may govern the derived redshift trend of $q_{rm TIR}$. Lastly, we present a redshift-dependent relation between rest-frame 1.4GHz radio luminosity and star formation rate taking the derived redshift trend into account.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا