No Arabic abstract
We obtain a mixed complex simpler than the canonical one the computes the type cyclic homologies of a crossed product with invertible cocycle $Atimes_{rho}^f H$, of a weak module algebra $A$ by a weak Hopf algebra $H$ whose unit cocommutes. This complex is provided with a filtration. The spectral sequence of this filtration generalizes the spectral sequence obtained in cite{CGG}. When $f$ takes its values in a separable subalgebra of $A$ that satisfies suitable conditions, the above mentioned mixed complex is provided with another filtration, whose spectral sequence generalize the Feigin-Tsygan spectral sequence.
We obtain a mixed complex simpler than the canonical one the computes the type cyclic homologies of a crossed product with invertible cocycle $Atimes_{rho}^f H$, of a weak module algebra $A$ by a weak Hopf algebra $H$. This complex is provided with a filtration. The spectral sequence of this filtration generalizes the spectral sequence obtained in cite{CGG}. When $f$ takes its values in a separable subalgebra of $A$ that satisfies suitable conditions, the above mentioned mixed complex is provided with another filtration, whose spectral sequence generalize the Feigin-Tsygan spectral sequence.
We study the periodic cyclic homology groups of the cross-product of a finite type algebra $A$ by a discrete group $Gamma$. In case $A$ is commutative and $Gamma$ is finite, our results are complete and given in terms of the singular cohomology of the strata of fixed points. These groups identify our cyclic homology groups with the dlp orbifold cohomologydrp of the underlying (algebraic) orbifold. The proof is based on a careful study of localization at fixed points and of the resulting Koszul complexes. We provide examples of Azumaya algebras for which this identification is, however, no longer valid. As an example, we discuss some affine Weyl groups.
$HC_*(A rtimes G)$ is the cyclic homology of the crossed product algebra $A rtimes G.$ For any $g epsilon G$ we will define a homomorphism from $HC_*^g(A),$ the twisted cylic homology of $A$ with respect to $g,$ to $HC_*(A rtimes G).$ If $G$ is the finite cyclic group generated by $g$ and $|G|=r$ is invertible in $k,$ then $HC_*(A rtimes G)$ will be isomorphic to a direct sum of $r$ copies of $HC_*^g(A).$ For the case where $|G|$ is finite and $Q subset k$ we will generalize the Karoubi and Connes periodicity exact sequences for $HC_*^g(A)$ to Karoubi and Connes periodicity exact sequences for $HC_*(A rtimes G)$ .
We present a new approach to cyclic homology that does not involve the Connes differential and is based on a `noncommutative equivariant de Rham complex of an associative algebra. The differential in that complex is a sum of the Karoubi-de Rham differential, which replaces the Connes differential, and another operation analogous to contraction with a vector field. As a byproduct, we give a simple explicit construction of the Gauss-Manin connection, introduced earlier by E. Getzler, on the relative cyclic homology of a flat family of associative algebras over a central base ring. We introduce and study `free-product deformations of an associative algebra, a new type of deformation over a not necessarily commutative base ring. Natural examples of free-product deformations arise from preprojective algebras and group algebras for compact surface groups.
We study crossed products of arbitrary operator algebras by locally compact groups of completely isometric automorphisms. We develop an abstract theory that allows for generalizations of many of the fundamental results from the selfadjoint theory to our context. We complement our generic results with the detailed study of many important special cases. In particular we study crossed products of tensor algebras, triangular AF algebras and various associated C*-algebras. We make contributions to the study of C*-envelopes, semisimplicity, the semi-Dirichlet property, Takai duality and the Hao-Ng isomorphism problem. We also answer questions from the pertinent literature.