Do you want to publish a course? Click here

On the shape and completeness of the column density probability distribution function of molecular clouds

82   0   0.0 ( 0 )
 Added by Bastian K\\\"ortgen
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Both observational and theoretical research over the past decade has demonstrated that the probability distribution function (PDF) of the gas density in turbulent molecular clouds is a key ingredient for understanding star formation. It has recently been argued that the PDF of molecular clouds is a pure power-law distribution. It has been claimed that the log-normal part is ruled out when using only the part of the PDF up/down to which it is complete, that is where the column density contours are still closed. By using the results from high-resolution magnetohydrodynamical simulations of molecular cloud formation and evolution, we find that the column density PDF is indeed composed of a log-normal and, if including self-gravity, a power-law part. We show that insufficient sampling of a molecular cloud results in closed contours that cut off the log-normal part. In contrast, systematically increasing the field of view and sampling the entire cloud yields a completeness limit at the lower column densities, which also recovers the log-normal part. This demonstrates that the field of view must be sufficiently large for the PDF to be complete down to its log-normal part, which has important implications for predictions of star-formation activity based on the PDF.



rate research

Read More

Simulations generally show that non-self-gravitating clouds have a lognormal column density ($Sigma$) probability distribution function (PDF), while self-gravitating clouds with active star formation develop a distinct power-law tail at high column density. Although the growth of the power law can be attributed to gravitational contraction leading to the formation of condensed cores, it is often debated if an observed lognormal shape is a direct consequence of supersonic turbulence alone, or even if it is really observed in molecular clouds. In this paper we run three-dimensional magnetohydrodynamic simulations including ambipolar diffusion with different initial conditions to see the effect of strong magnetic fields and nonlinear initial velocity perturbations on the evolution of the column density PDFs. Our simulations show that column density PDFs of clouds with supercritical mass-to-flux ratio, with either linear perturbations or nonlinear turbulence, quickly develop a power-law tail such that $dN/d log Sigma propto Sigma^{-alpha}$ with index $alpha simeq 2$. Interestingly, clouds with subcritical mass-to-flux ratio also proceed directly to a power-law PDF, but with a much steeper index $alpha simeq 4$. This is a result of gravitationally-driven ambipolar diffusion. However, for nonlinear perturbations with a turbulent spectrum ($v_{k}^{2} propto k^{-4}$), the column density PDFs of subcritical clouds do retain a lognormal shape for a major part of the cloud evolution, and only develop a distinct power-law tail with index $alpha simeq 2$ at greater column density when supercritical pockets are formed.
We characterize the column density probability distributions functions (PDFs) of the atomic hydrogen gas, HI, associated with seven Galactic molecular clouds (MCs). We use 21 cm observations from the Leiden/Argentine/Bonn Galactic HI Survey to derive column density maps and PDFs. We find that the peaks of the HI PDFs occur at column densities ranging from ~1-2$times 10^{21}$ cm$^2$ (equivalently, ~0.5-1 mag). The PDFs are uniformly narrow, with a mean dispersion of $sigma_{HI}approx 10^{20}$ cm$^2$ (~0.1 mag). We also investigate the HI-to-H$_2$ transition towards the cloud complexes and estimate HI surface densities ranging from 7-16 $M_odot$ pc$^{-2}$ at the transition. We propose that the HI PDF is a fitting tool for identifying the HI-to-H$_2$ transition column in Galactic MCs.
214 - D. Froebrich 2010
The formation of stars is inextricably linked to the structure of their parental molecular clouds. Here we take a number of nearby giant molecular clouds (GMCs) and analyse their column density and mass distributions. This investigation is based on four new all-sky median colour excess extinction maps determined from 2MASS. The four maps span a range of spatial resolution of a factor of eight. This allows us to determine cloud properties at a common spatial scale of 0.1pc, as well as to study the scale dependence of the cloud properties. We find that the low column density and turbulence dominated part of the clouds can be well fit by a log-normal distribution. However, above a universal extinction threshold of 6.0 pm 1.5mag A_V there is excess material compared to the log-normal distribution in all investigated clouds. This material represents the part of the cloud that is currently involved in star formation, and thus dominated by gravity. Its contribution to the total mass of the clouds ranges over two orders of magnitude from 0.1 to 10%. This implies that our clouds sample various stages in the evolution of GMCs. Furthermore, we find that the column density and mass distributions are extremely similar between clouds if we analyse only the high extinction material. On the other hand, there are significant differences between the distributions if only the low extinction, turbulence dominated regions are considered. This shows that the turbulent properties differ between clouds depending on their environment. However, no significant influence on the predominant mode of star formation (clustered or isolated) could be found. Furthermore, the fraction of the cloud actively involved in star formation is only governed by gravity, with the column density and mass distributions not significantly altered by local feedback processes.
We present a far-IR survey of the entire Mon R2 GMC with $Herschel-SPIRE$ cross-calibrated with $Planck-HFI$ data. We fit the SEDs of each pixel with a greybody function and an optimal beta value of 1.8. We find that mid-range column densities obtained from far-IR dust emission and near-IR extinction are consistent. For the entire GMC, we find that the column density histogram, or N-PDF, is lognormal below $sim$10$^{21}$ cm$^{-2}$. Above this value, the distribution takes a power law form with an index of -2.16. We analyze the gas geometry, N-PDF shape, and YSO content of a selection of subregions in the cloud. We find no regions with pure lognormal N-PDFs. The regions with a combination of lognormal and one power law N-PDF have a YSO cluster and a corresponding centrally concentrated gas clump. The regions with a combination of lognormal and two power law N-PDF have significant numbers of typically younger YSOs but no prominent YSO cluster. These regions are composed of an aggregate of closely spaced gas filaments with no concentrated dense gas clump. We find that for our fixed scale regions, the YSO count roughly correlates with the N-PDF power law index. The correlation appears steeper for single power law regions relative to two power law regions with a high column density cut-off, as a greater dense gas mass fraction is achieved in the former. A stronger correlation is found between embedded YSO count and the dense gas mass among our regions.
The probability distribution functions (PDFs) for atomic, molecular, and total gas surface densities of M33 are determined at a resolution of about 50~pc over regions that share coherent morphological properties to unveil fingerprints of self-gravity across the star-forming disk. Most of the total gas PDFs from the central region to the edge of the star-forming disk are well-fitted by log-normal functions whose width decreases radially outwards. Because the HI velocity dispersion is approximately constant across the disk, the decrease of the PDF width is consistent with a lower Mach number for the turbulent ISM at large galactocentric radii where a higher fraction of HI is in the warm phase. The atomic gas is found mostly at face-on column densities below N$_{H}^{lim}$=2.5 10$^{21}$~cm$^{-2}$, with small radial variations of N$_{H}^{lim}$. The molecular gas PDFs do not show strong deviations from log-normal functions in the central region where molecular fractions are high. Here the high pressure and rate of star formation shapes the PDF as a log-normal function dispersing self-gravitating complexes with intense feedback at all column densities that are spatially resolved. Power law PDFs for the molecules are found near and above N$_H^{lim}$, in the well defined southern spiral arm and in a continuous dense filament extending at larger galactocentric radii; this is evident in cloud samples at different evolutionary stages along the star formation cycle. In the filament nearly half of the molecular gas departs from a log-normal PDF and power laws are also observed in pre-star forming molecular complexes. The slope of the power law is between -1 and -2. This slope, combined with maps showing where the different parts of the power law PDFs come from, suggest a power-law stratification of density within molecular cloud complexes, which is consistent with the dominance of self-gravity.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا